matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit & Definitonslücken
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Stetigkeit & Definitonslücken
Stetigkeit & Definitonslücken < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit & Definitonslücken: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 15:44 So 04.12.2011
Autor: Nicky-01

Aufgabe
Bestimmen Sie alle Definitionslücken der folgenden Funktionen. Prüfen Sie außerdem für jede Definitionslücke, ob die Funktion dort stetig ergänzbar ist und wen ja, durch welchen Funktionswert!

[mm] a)\bruch {x^2-3x+5}{x-1} [/mm]
[mm] b)\bruch {x^2-3x+2}{x-1} [/mm]
[mm] c)\bruch {-2x^2-x+3}{1-x^2} [/mm]

Hallo,
leider haben wir weder in der Vorlesung noch in dem Tutorium Stetigkeit besprochen. Daher weiß ich leider nicht wie ich da vorgehen muss.
Habe im Internet gelesen, dass man den Nenner =0 setzen und auflösen soll und den Wert dann auch im Zähler einsetze soll,
und würde dieser dann auch Null ergeben würde man wissen, dass es sich um eie hebbare Lücke handelt,
wäre dies nicht der fall, würde es sich um eine Pollstelle handeln und würde nicht stetig fortsetzbar sein.
wenn dies stimmt,

dann müsste:
a) für x=1 im Nenner Null ergeben, allerdings nicht im Zähler, dort würde es 3 ergeben.
Also müsste es sich dort doch um Pollstelle handeln.
Wenn dies stimmt, ist doch die Funktion auch nicht stetig oder?
oder kann man das auch irgendwie anders herausfinden?

bei b) wäre der Nenner auch für x=1 =0 und für x=1 wäre auch der Zähler Null, also hätte man dort eine hebbare Lücke,
aber wie bekommt man raus, wo diese Defiitionslücke ist und für welchen Funtionswert sie stetig ergänzbar ist?

c) wäre für x=1 und x=-1 im Nenner 0,
für x=-1 wäre der Zähler allerdings nicht null
und für x=1 wäre der Zähler auch 0 ....
wie geht man denn dann dort vor?

Sind diese erste Gedankengänge überhaupt richtig?
oder geht man anders vor um herauszufinden ob eine Fuktion stetig ist oder nicht?


        
Bezug
Stetigkeit & Definitonslücken: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 So 04.12.2011
Autor: schachuzipus

Hallo Nicky-01,


> Bestimmen Sie alle Definitionslücken der folgenden
> Funktionen. Prüfen Sie außerdem für jede
> Definitionslücke, ob die Funktion dort stetig ergänzbar
> ist und wen ja, durch welchen Funktionswert!
>  
> [mm]a)\bruch {x^2-3x+5}{x-1}[/mm]
>  [mm]b)\bruch {x^2-3x+2}{x-1}[/mm]
>  
> [mm]c)\bruch {-2x^2-x+3}{1-x^2}[/mm]
>  Hallo,
> leider haben wir weder in der Vorlesung noch in dem
> Tutorium Stetigkeit besprochen. Daher weiß ich leider
> nicht wie ich da vorgehen muss.
>  Habe im Internet gelesen, dass man den Nenner =0 setzen
> und auflösen soll und den Wert dann auch im Zähler
> einsetze soll,
>  und würde dieser dann auch Null ergeben würde man
> wissen, dass es sich um eie hebbare Lücke handelt,
>  wäre dies nicht der fall, würde es sich um eine
> Pollstelle handeln und würde nicht stetig fortsetzbar
> sein.

Jo, wenn die Nullstellen in gleicher Vielfachheit vorkommen!

>  wenn dies stimmt,
>  
> dann müsste:
>  a) für x=1 im Nenner Null ergeben, allerdings nicht im
> Zähler, dort würde es 3 ergeben.
>  Also müsste es sich dort doch um Pollstelle handeln. [ok]
>  Wenn dies stimmt, ist doch die Funktion auch nicht stetig
> oder?

Stetig ist sie in [mm]x=1[/mm] sowieso nicht, da sie dort nicht definiert ist.

Sie ist hier aber auch nicht stetig fortsetzbar

>  oder kann man das auch irgendwie anders herausfinden?
>  
> bei b) wäre der Nenner auch für x=1 =0 und für x=1 wäre
> auch der Zähler Null, also hätte man dort eine hebbare
> Lücke,


[ok]

> aber wie bekommt man raus, wo diese Defiitionslücke ist
> und für welchen Funtionswert sie stetig ergänzbar ist?

Verstehe ich nicht, die Funktion ist für [mm]x=1[/mm] nicht definiert.

Nach Herauskürzen von [mm](x+1)[/mm] ergibt sich [mm]x-2[/mm]

An der Stelle [mm]x=1[/mm] ist das [mm]1-2=-1[/mm]

Also kannst du durch die zusätzliche Definition [mm]f(1):=-1[/mm] die Ausgangsfunktion in [mm]x=1[/mm] stetig fortsetzen

>  
> c) wäre für x=1 und x=-1 im Nenner 0,
>  für x=-1 wäre der Zähler allerdings nicht null
>  und für x=1 wäre der Zähler auch 0 ....
>  wie geht man denn dann dort vor?

Nun, du kannst analog zu b) die Funktion in [mm]x=1[/mm] stetig ergänzen durch [mm]f(1):=??[/mm]

In [mm]x=-1[/mm] hingegen liegt eine Polstelle vor.

Das kannst du so begründen, wie du in der Einleitung geschrieben hast, oder mal [mm]\lim\limits_{x\to -1^+,-1^-}f(x)[/mm] berechnen ...

>  
> Sind diese erste Gedankengänge überhaupt richtig?
>  oder geht man anders vor um herauszufinden ob eine Fuktion
> stetig ist oder nicht?

Bei gebrochen-rationalen Funktionen ist die Untersuchung von Zähler und Nenner auf Nullstellen, also die Faktorisierung von Zähler und Nenner, ein probates Mittel!

Gruß

schachuzipus

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]