matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit, Beweis zu Corollar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit, Beweis zu Corollar
Stetigkeit, Beweis zu Corollar < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit, Beweis zu Corollar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Di 09.03.2010
Autor: ChopSuey

Aufgabe
Sei $\ f: D [mm] \to \IR [/mm] $ stetig im Punkt $\ p [mm] \in [/mm] D $ und $\ f(p) [mm] \not= [/mm] 0$. Dann ist $\ f(x) [mm] \not= [/mm] 0 $ für alle $\ x $ in einer Umgebung von $\ p $m d.h. es existiert ein $\ [mm] \delta [/mm] > 0 $, so dass

$\ f(x) [mm] \not= [/mm] 0 $ für alle $\ x [mm] \in [/mm] D $ mit $\ | x-p | < [mm] \delta [/mm] $

Hallo,

das ist ein Corollar aus O.Forster "Analysis 1" s.109.

Ich verstehe den Beweis leider nicht so ganz und würde mich freuen, wenn mir dabei jemand helfen kann.

Beweis:

Zu $\ [mm] \varepsilon [/mm] := | f(p) | > 0 $ existiert ein $\ delta > 0 $, so dass $\ | f(x) - f(p) | < [mm] \varepsilon [/mm] $ für alle $\ x [mm] \in [/mm] D $ mit $\ | x-p | < [mm] \delta [/mm] $.

Bis hier hin ist ja noch nix passiert, da ist alles klar.

Weiter:
Daraus folgt  $| f(x) | [mm] \ge [/mm] |f(p)| - | f(x) - f(p) | > 0 $ für alle  $\ x [mm] \in [/mm] D $ mit $\ | x-p | < [mm] \delta [/mm] $.

Diese Ungleichung verstehe ich nicht ganz.

Mir ist klar, dass  $ |f(p) | > |f(x) - f(p) | > 0 [mm] \gdw [/mm] |f(p) |- |f(x) - f(p) | > 0 $

Doch warum ist $\ | f(x) | [mm] \ge [/mm] |f(p)| - | f(x) - f(p) | $ ?

Es muss doch stetige Funktionen geben, die an einer bestimmten Stelle ihres Definitionsbereiches stetig sind, diese Stelle aber in einer Umgebung liegt, in der auch eine Nullstelle der Funktion existiert, oder nicht?

Gruß
ChopSuey

        
Bezug
Stetigkeit, Beweis zu Corollar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Di 09.03.2010
Autor: straussy


> Mir ist klar, dass  [mm]|f(p) | > |f(x) - f(p) | > 0 \gdw |f(p) |- |f(x) - f(p) | > 0[/mm]

Klar! So sind [mm]\epsilon[/mm] und [mm]f(x)[/mm] definiert.  

>  
> Doch warum ist [mm]\ | f(x) | \ge |f(p)| - | f(x) - f(p) |[/mm] ?

Das folgt aus der Dreiecksungleichung [mm]|a|+|b|\geq |a+b| [/mm]. Setze [mm]a+b=f(p)[/mm], [mm]a=f(x)[/mm] und [mm]b=f(p)-f(x)[/mm].    

>  
> Es muss doch stetige Funktionen geben, die an einer
> bestimmten Stelle ihres Definitionsbereiches stetig sind,
> diese Stelle aber in einer Umgebung liegt, in der auch eine
> Nullstelle der Funktion existiert, oder nicht?

Klar geht das. Aber dann verkleinert man die Umgebung halt so lange, bis die Nullstelle nicht mehr drin liegt.

Gruß
Tobias

Bezug
                
Bezug
Stetigkeit, Beweis zu Corollar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Di 09.03.2010
Autor: ChopSuey

Hallo Tobias,

saugeil, alles sofort verstanden ;-)

Danke für Deine Antwort.
Die Dreiecksungleichung hätte ich sehen müssen.

Schönen Abend noch,
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]