matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Stetigkeit
Stetigkeit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mi 09.11.2011
Autor: Bleistiftkauer

h(x,y) = g(x,y)*y  
g(x,y)= [mm] \bruch{xy}{x^2+y^2} [/mm] wenn (x,y) [mm] \not= [/mm] (0,0)
g(x,y) = 0 für (x,y) [mm] \not= [/mm] (0,0)
Wir sollen zeigen, dass g(x,y) in (0,0) nicht stetig ist und h(x,y) in (0,0) stetig ist.

Ersteres habe ich.

Bei zweiterem soll man die Stetigkeit beweisen, in dem man die Beschränktheit von g zeigt, doch ich verstehe nicht warum man das so machen kann. Ich habe in unserem Skript keinen Satz gefunden, der von der Beschränktheit zur Stetigkeit führt.

Könnte mir das jemand erklären?

        
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:01 Mi 09.11.2011
Autor: Bleistiftkauer

g(x,y) = 0, wenn (x,y) = (0,0)

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Mi 09.11.2011
Autor: fred97


> h(x,y) = g(x,y)*y  
> g(x,y)= [mm]\bruch{xy}{x^2+y^2}[/mm] wenn (x,y) [mm]\not=[/mm] (0,0)
>  g(x,y) = 0 für (x,y) [mm]\not=[/mm] (0,0)
>  Wir sollen zeigen, dass g(x,y) in (0,0) nicht stetig ist
> und h(x,y) in (0,0) stetig ist.
>  
> Ersteres habe ich.
>  
> Bei zweiterem soll man die Stetigkeit beweisen, in dem man
> die Beschränktheit von g zeigt, doch ich verstehe nicht
> warum man das so machen kann. Ich habe in unserem Skript
> keinen Satz gefunden, der von der Beschränktheit zur
> Stetigkeit führt.
>  
> Könnte mir das jemand erklären?

Zur Beschränktheit von g:

    Für (x,y) [mm] \ne [/mm] (0,0) ist

              |g(x,y)| [mm] \le [/mm] 1/2.

(Denke an Binomi)

Damit ist natürlich auch  |g(x,y)| [mm] \le [/mm] 1/2  für alle (x,y)

Damit ist

     |h(x,y)| [mm] \le \bruch{1}{2}|y| [/mm]

FRED


Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Mi 09.11.2011
Autor: Bleistiftkauer

Ja, soweit hatte ich das schon.
Meine Frage war, wie ich daraus auf die Stetigkeit schließen kann.
Nur weil h beschränkt ist, heißt es ja nicht unbedingt, dass h stetig in (0,0) ist.

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Mi 09.11.2011
Autor: fred97


> Ja, soweit hatte ich das schon.
>  Meine Frage war, wie ich daraus auf die Stetigkeit
> schließen kann.
> Nur weil h beschränkt ist,

Ne, g ist beschränkt.

> heißt es ja nicht unbedingt,
> dass h stetig in (0,0) ist.


Wir haben

          

     |h(x,y)| $ [mm] \le \bruch{1}{2}|y| [/mm] $

Was treibt also h(x,y) für (x,y) [mm] \to [/mm] (0,0) ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]