matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Mi 25.05.2011
Autor: javeda

Aufgabe
Sei [mm] f:\IR \to \IR [/mm] stetig und a,b [mm] \in \IR [/mm] mit f(a)>b.
Zeige, es gibt ein [mm] \delta [/mm] >0, so dass f(x)>b für alle [mm] x\in (a-\delta,a+\delta). [/mm]

Hallo zusammen!

Irgendwie komme ich bei dieser Aufgabe nicht richtig voran.
Wenn ich die Aufgabe richtig verstanden habe, heißt das: wenn f stetig ist und f(a)>b dann gibt es eine [mm] \delta-Umgebung [/mm] von a für die alle f(x)>b sind.

Aber wie zeige ich das?
Wenn ich [mm] x\le a+\delta [/mm]  einsetzte habe ich:

|x-a| [mm] \le |a+\delta-a|=|\delta|=\delta [/mm]

Da f stetig gilt für |f(x)-f(a)| = [mm] |f(a+\delta)-f(a)| [/mm] < [mm] |f(a+\delta)-b|<\varepsilon [/mm]

Aber wie muss ich jetzt weitermachen, damit ich f(x)>b bekomme?

Danke schonmal für die Hilfe

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Mi 25.05.2011
Autor: rainerS

Hallo!

> Sei [mm]f:\IR \to \IR[/mm] stetig und [mm]a,b \in \IR[/mm] mit f(a)>b.
>  Zeige, es gibt ein [mm]\delta >0[/mm], so dass f(x)>b für alle
> [mm]x\in (a-\delta,a+\delta).[/mm]
>  Hallo zusammen!
>  
> Irgendwie komme ich bei dieser Aufgabe nicht richtig
> voran.
>  Wenn ich die Aufgabe richtig verstanden habe, heißt das:
> wenn f stetig ist und f(a)>b dann gibt es eine
> [mm]\delta-Umgebung[/mm] von a für die alle f(x)>b sind.
>  
> Aber wie zeige ich das?
>  Wenn ich [mm]x\le a+\delta[/mm]  einsetzte habe ich:
>  
> |x-a| [mm]\le |a+\delta-a|=|\delta|=\delta[/mm]
>  
> Da f stetig gilt für [mm]|f(x)-f(a)| = |f(a+\delta)-f(a)| < |f(a+\delta)-b|<\varepsilon[/mm]

Nein. Da hast du die die Stetigkeitsbedingung umgedreht. Es gibt nicht ein [mm] $\varepsilon$ [/mm] zu jedem [mm] $\delta$, [/mm] sondern umgekehrt.

Tipp: Wähle [mm] $\varepsilon [/mm] =f(a)-b$ und setze das Stetigkeitskriterium ein.

Viele Grüße
   Rainer



Bezug
        
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Do 26.05.2011
Autor: TripleJump

Hallo allerseits!

Ich hänge an selbiger Aufgabe bei der Umformung der Ungleichung.

[mm] \forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] : [mm] \forall [/mm]  x [mm] \in [/mm] (a- [mm] \delta, [/mm] a+ [mm] \delta [/mm] ) : | f(x) - f(a) | < [mm] \varepsilon [/mm]

Nungut, mit [mm] \varepsilon [/mm] := f(a) -b kommt man zu

|f(x)-f(a)| < f(a)-b , aber hier komme ich leider nicht weiter... Der Betrag macht mir ziehmlich zu schaffen...

Danke für Eure Hilfe!

LG TripleJump


Bezug
                
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Fr 27.05.2011
Autor: angela.h.b.


> Hallo allerseits!
>  
> Ich hänge an selbiger Aufgabe bei der Umformung der
> Ungleichung.
>  
> [mm]\forall \varepsilon[/mm] > 0 [mm]\exists \delta[/mm] : [mm]\forall[/mm]  x [mm]\in[/mm] (a-
> [mm]\delta,[/mm] a+ [mm]\delta[/mm] ) : | f(x) - f(a) | < [mm]\varepsilon[/mm]
>  
> Nungut, mit [mm]\varepsilon[/mm] := f(a) -b kommt man zu
>
> |f(x)-f(a)| < f(a)-b , aber hier komme ich leider nicht
> weiter... Der Betrag macht mir ziehmlich zu schaffen...

Hallo,

[willkommenmr].

Wenn |f(x)-f(a)| < f(a)-b , dann ist das gleichbedeutend mit

-(f(a)-b)<f(x)-f(a)<f(a)-b.

Also ist  (linke Seite) b-f(a)< f(x)-f(a) <==> b<f(x).

Gruß v. Angela


>  
> Danke für Eure Hilfe!
>  
> LG TripleJump
>  


Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Fr 27.05.2011
Autor: fred97

Am einfachsten gehts mit einem Widerspruchsbeweis. Nimm an, ein solches [mm] \delta [/mm] würde es nicht geben.

Ist nun n [mm] \in \IN [/mm] , so gibt es also ein [mm] $x_n \in [/mm] (a-1/n, a+1/n)$ mit:  [mm] f(x_n)\le [/mm] b.

Die so gewonnene Folge [mm] (x_n) [/mm] konvergiert gegen a. Jetzt nutze die Stetigkeit von f in a, um zu einem Widerspruch zu kommen.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]