Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:25 Fr 10.12.2010 | Autor: | dar |
Aufgabe | Bestimmen Sie für die folgenden Funktionen die Menge aller Punkte, in denen
sie stetig sind.
f: [mm] R^{2} \to [/mm] R
[mm] f(x,y)=\begin{cases} (x\*y)/|x|, & \mbox{für } x \mbox{ ungleich 0} \\ y, & \mbox{für } x \mbox{ gleich 0} \end{cases} [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
bin gerade bei dieser Aufgabe. So weit komme ich nur:
f ist auf D= [mm] \{ (x,y) \in R^{2}; x\not=0 \} [/mm] stetig, da x*y/|x| der Quotient stetiger Funktionen ist ( |x| ist auch stetig, weil es vorausgesetzt ist, dass [mm] x\not=0 [/mm] ist).
z.z., dass f auf [mm] \{ (x,y) \in R^{2}; x=0 \} [/mm] stetig ist. Sei [mm] (x_{k},y_{k}) [/mm] k [mm] \in [/mm] N eine Folge von Zaalenpaaren im [mm] R^{2}, [/mm] die gegen (0,y) konvergiert, also [mm] \limes_{k\rightarrow\infty}x_{k}=0 \limes_{k\rightarrow\infty}y_{k}=?
[/mm]
Ich glaube, dass das gegen y konvergiert, aber heißt das, dass y beliebeg ist?
Weiter komme ich selbst leider nicht.
Könntet mir jemand sagen, gegen was [mm] y_{k} [/mm] konvergiert und warum das so ist?
Danke allen vorab
Dar
|
|
|
|
Huhu,
> f ist auf D= [mm]\{ (x,y) \in R^{2}; x\not=0 \}[/mm] stetig, da
> x*y/|x| der Quotient stetiger Funktionen ist ( |x| ist auch
> stetig, weil es vorausgesetzt ist, dass [mm]x\not=0[/mm] ist).
> z.z., dass f auf [mm]\{ (x,y) \in R^{2}; x=0 \}[/mm] stetig ist.
Das wirst du nicht zeigen können, aber dein Ansatz ist trotzdem richtig.
> Sei [mm](x_{k},y_{k})[/mm] k [mm]\in[/mm] N eine Folge von Zaalenpaaren im
> [mm]R^{2},[/mm] die gegen (0,y) konvergiert, also
> [mm]\limes_{k\rightarrow\infty}x_{k}=0 \limes_{k\rightarrow\infty}y_{k}=?[/mm]
>
> Ich glaube, dass das gegen y konvergiert, aber heißt das,
> dass y beliebeg ist?
Mit beiden Vermtungen liegst du erstmal richtig.
Nun musst du halt schauen:
Für welche beliebigen y gilt nun also:
[mm] $\lim_{(x_k,y_k) \to (0,y)}f(x_k,y_k) [/mm] = f(0,y)$
Betrachte dazu doch mal die linke und rechte Seite der Gleichung und setze ein und forme um.
Dann erhälst du eine Einschränkung, für welche y obige Gleichung gilt.
MFG,
Gono.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:21 Fr 10.12.2010 | Autor: | dar |
Aufgabe | Bestimmen Sie für die folgenden Funktionen die Menge aller Punkte, in denen
sie stetig sind.
f: [mm] R^{2} \to [/mm] R
[mm] f(x,y)=\begin{cases} (x\*y)/|x|, & \mbox{für } x \mbox{ ungleich 0} \\ y, & \mbox{für } x \mbox{ gleich 0} \end{cases} [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo, Gono, danke für den Hinweis.
Habe ich das so richtig verstanden?
Die Abbildung [mm] f(x_{k},y_{k}) [/mm] ist stetig auf T= [mm] \{ (x,y) \in R^{2}; x=0 \}, [/mm] wenn sie in jedem Punkt (0,y) [mm] \in [/mm] T stetig ist, also:
[mm] |f(x_{k},y_{k}) [/mm] - f(0,y)| = |x*y/|x| - y| = |y|*|x/|x|-1|
[mm] \limes_{(x_{k},y_{k}\rightarrow\(0,y)} [/mm] |y|*|x/|x|-1| [mm] \not= [/mm] 0, da |x|=x oder -x
also unstetig
Danke
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:00 Sa 11.12.2010 | Autor: | Loddar |
Hallo dar!
Das scheint m.E. okay. Jedoch solltest Du etwas genauer auf den Term [mm] $\bruch{x}{|x|}$ [/mm] eingehen bzw. diesen fallweise unterscheiden.
Gruß
Loddar
|
|
|
|
|
Insbesondere ist die Aussage falsch, dass sie in jedem Punkt $(0,y)$ unstetig ist.
Da existiert durchaus (mindestens) einer, bei dem das nicht so ist.
Wenn du das verstanden hast, findest da bestimmt auch was
MFG,
Gono.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 12:51 So 12.12.2010 | Autor: | dar |
Aufgabe | Bestimmen Sie für die folgenden Funktionen die Menge aller Punkte, in denen
sie stetig sind.
f: [mm] R^{2} \to [/mm] R
[mm] f(x,y)=\begin{cases} (x\*y)/|x|, & \mbox{für } x \mbox{ ungleich 0} \\ y, & \mbox{für } x \mbox{ gleich 0} \end{cases} [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
Könnten Sie noch mal anschauen, ob es stimmt?
Die Abbildung [mm] f(x_{k},y_{k}) [/mm] ist stetig auf T= [mm] \{ (x,y) \in R^{2}; x=0 \}, [/mm] wenn sie in jedem Punkt (0,y) [mm] \in [/mm] T stetig ist, also:
[mm] |f(x_{k},y_{k}) [/mm] - f(0,y)| = |x*y/|x| - y| = |y|*|x/|x|-1|
[mm] \limes_{(x_{k},y_{k}\rightarrow\(0,y)} [/mm] |y|*|x/|x|-1| [mm] \not= [/mm] 0, wenn |x|=-x
[mm] \limes_{(x_{k},y_{k}\rightarrow\(0,y)} [/mm] |y|*|x/|x|-1| = 0, wenn |x|=x
also die Funktion ist stetig auf T= [mm] \{ (x,y) \in R^{2}; x=0 \} [/mm] wenn |x|=x
Danke vorab
Dar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Do 16.12.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|