matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:25 Fr 10.12.2010
Autor: dar

Aufgabe
Bestimmen Sie für die folgenden Funktionen die Menge aller Punkte, in denen
sie stetig sind.
f: [mm] R^{2} \to [/mm] R
[mm] f(x,y)=\begin{cases} (x\*y)/|x|, & \mbox{für } x \mbox{ ungleich 0} \\ y, & \mbox{für } x \mbox{ gleich 0} \end{cases} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
bin gerade bei dieser Aufgabe. So weit komme ich nur:
f ist auf D= [mm] \{ (x,y) \in R^{2}; x\not=0 \} [/mm] stetig, da x*y/|x| der Quotient stetiger Funktionen ist ( |x| ist auch stetig, weil es vorausgesetzt ist, dass [mm] x\not=0 [/mm] ist).
z.z., dass f auf [mm] \{ (x,y) \in R^{2}; x=0 \} [/mm] stetig ist. Sei [mm] (x_{k},y_{k}) [/mm] k [mm] \in [/mm] N eine Folge von Zaalenpaaren im [mm] R^{2}, [/mm] die gegen (0,y) konvergiert, also [mm] \limes_{k\rightarrow\infty}x_{k}=0 \limes_{k\rightarrow\infty}y_{k}=? [/mm]
Ich glaube, dass das gegen y konvergiert, aber heißt das, dass y beliebeg ist?
Weiter komme ich selbst leider nicht.
Könntet mir jemand sagen, gegen was [mm] y_{k} [/mm] konvergiert und warum das so ist?
Danke allen vorab
Dar

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Fr 10.12.2010
Autor: Gonozal_IX

Huhu,

>  f ist auf D= [mm]\{ (x,y) \in R^{2}; x\not=0 \}[/mm] stetig, da
> x*y/|x| der Quotient stetiger Funktionen ist ( |x| ist auch
> stetig, weil es vorausgesetzt ist, dass [mm]x\not=0[/mm] ist).

[ok]

>  z.z., dass f auf [mm]\{ (x,y) \in R^{2}; x=0 \}[/mm] stetig ist.

Das wirst du nicht zeigen können, aber dein Ansatz ist trotzdem richtig.

> Sei [mm](x_{k},y_{k})[/mm] k [mm]\in[/mm] N eine Folge von Zaalenpaaren im
> [mm]R^{2},[/mm] die gegen (0,y) konvergiert, also
> [mm]\limes_{k\rightarrow\infty}x_{k}=0 \limes_{k\rightarrow\infty}y_{k}=?[/mm]
>  
> Ich glaube, dass das gegen y konvergiert, aber heißt das,
> dass y beliebeg ist?

Mit beiden Vermtungen liegst du erstmal richtig.

Nun musst du halt schauen:

Für welche beliebigen y gilt nun also:

[mm] $\lim_{(x_k,y_k) \to (0,y)}f(x_k,y_k) [/mm] = f(0,y)$

Betrachte dazu doch mal die linke und rechte Seite der Gleichung und setze ein und forme um.
Dann erhälst du eine Einschränkung, für welche y obige Gleichung gilt.

MFG,
Gono.

Bezug
                
Bezug
Stetigkeit: Beschränkung
Status: (Frage) beantwortet Status 
Datum: 23:21 Fr 10.12.2010
Autor: dar

Aufgabe
Bestimmen Sie für die folgenden Funktionen die Menge aller Punkte, in denen
sie stetig sind.
f: [mm] R^{2} \to [/mm] R
[mm] f(x,y)=\begin{cases} (x\*y)/|x|, & \mbox{für } x \mbox{ ungleich 0} \\ y, & \mbox{für } x \mbox{ gleich 0} \end{cases} [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, Gono, danke für den Hinweis.

Habe ich das so richtig verstanden?

Die Abbildung [mm] f(x_{k},y_{k}) [/mm] ist stetig auf T= [mm] \{ (x,y) \in R^{2}; x=0 \}, [/mm] wenn sie in jedem Punkt (0,y) [mm] \in [/mm] T stetig ist, also:
[mm] |f(x_{k},y_{k}) [/mm] - f(0,y)| = |x*y/|x| - y| = |y|*|x/|x|-1|
[mm] \limes_{(x_{k},y_{k}\rightarrow\(0,y)} [/mm] |y|*|x/|x|-1| [mm] \not= [/mm] 0, da |x|=x oder -x
also unstetig

Danke

Bezug
                        
Bezug
Stetigkeit: etwas genauer
Status: (Antwort) fertig Status 
Datum: 02:00 Sa 11.12.2010
Autor: Loddar

Hallo dar!


Das scheint m.E. okay. Jedoch solltest Du etwas genauer auf den Term [mm] $\bruch{x}{|x|}$ [/mm] eingehen bzw. diesen fallweise unterscheiden.


Gruß
Loddar


Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Sa 11.12.2010
Autor: Gonozal_IX

Insbesondere ist die Aussage falsch, dass sie in jedem Punkt $(0,y)$ unstetig ist.
Da existiert durchaus (mindestens) einer, bei dem das nicht so ist.
Wenn du das verstanden hast, findest da bestimmt auch was :-)

MFG,
Gono.

Bezug
                                
Bezug
Stetigkeit: Rückfrage
Status: (Frage) überfällig Status 
Datum: 12:51 So 12.12.2010
Autor: dar

Aufgabe
Bestimmen Sie für die folgenden Funktionen die Menge aller Punkte, in denen
sie stetig sind.
f: [mm] R^{2} \to [/mm] R
[mm] f(x,y)=\begin{cases} (x\*y)/|x|, & \mbox{für } x \mbox{ ungleich 0} \\ y, & \mbox{für } x \mbox{ gleich 0} \end{cases} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,

Könnten Sie noch mal anschauen, ob es stimmt?

Die Abbildung [mm] f(x_{k},y_{k}) [/mm] ist stetig auf T= [mm] \{ (x,y) \in R^{2}; x=0 \}, [/mm] wenn sie in jedem Punkt (0,y) [mm] \in [/mm] T stetig ist, also:
[mm] |f(x_{k},y_{k}) [/mm] - f(0,y)| = |x*y/|x| - y| = |y|*|x/|x|-1|
[mm] \limes_{(x_{k},y_{k}\rightarrow\(0,y)} [/mm] |y|*|x/|x|-1| [mm] \not= [/mm] 0, wenn |x|=-x
[mm] \limes_{(x_{k},y_{k}\rightarrow\(0,y)} [/mm] |y|*|x/|x|-1| = 0, wenn |x|=x
also die Funktion ist stetig auf T= [mm] \{ (x,y) \in R^{2}; x=0 \} [/mm] wenn |x|=x

Danke vorab
Dar

Bezug
                                        
Bezug
Stetigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 16.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]