matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mo 18.05.2009
Autor: schlumpfinchen123

Aufgabe
Sei f: [mm] \IR^n \to \IR [/mm] durch

f(x,y) := [mm] \bruch{x^3}{x^2 + y^2} [/mm] falls [mm] \vektor{x \\ y} \not= \vektor{0 \\ 0} [/mm]
f(x,y) := 0, falls [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{0 \\ 0} [/mm]

definiert.
Untersuchen sie, ob f in [mm] \vektor{0 \\ 0} [/mm] stetig ist.

Hallo,

kann mir jemand bei dieser Aufgabe weiterhelfen.
Ich habe irgendwie das Gefühl dass diese Funktion in [mm] \vektor{0 \\ 0} [/mm] nicht stetig ist und dass es eine Folge [mm] (x_k, y_k) [/mm] geben müsste die gegen [mm] \vektor{0 \\ 0} [/mm] konvergiert, aber bei der die Folge der Funktionswerte [mm] f(x_k, y_k) [/mm] nicht gegen [mm] f(\vektor{0 \\ 0}) [/mm] =0 konvergiert. Womit ja die Funktion in [mm] \vektor{0 \\ 0} [/mm] nach dem Folgenkriterium nicht stetig wäre. Ich kann solch eine Folge allerdings nicht finden. Vielleicht täuscht mich auch mein Gefühl und  
f ist an dieser Stelle stetig.
Wenn ja, wie könnte ich dies am besten nachweisen.
vielen dank schon mal!

Viele grüße,
schlupfinchen.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mo 18.05.2009
Autor: fred97


> Sei f: [mm]\IR^n \to \IR[/mm] durch
>
> f(x,y) := [mm]\bruch{x^3}{x^2 + y^2}[/mm] falls [mm]\vektor{x \\ y} \not= \vektor{0 \\ 0}[/mm]
>  
> f(x,y) := 0, falls [mm]\vektor{x \\ y}[/mm] = [mm]\vektor{0 \\ 0}[/mm]
>  
> definiert.
>  Untersuchen sie, ob f in [mm]\vektor{0 \\ 0}[/mm] stetig ist.
>  Hallo,
>  
> kann mir jemand bei dieser Aufgabe weiterhelfen.
> Ich habe irgendwie das Gefühl dass diese Funktion in
> [mm]\vektor{0 \\ 0}[/mm] nicht stetig ist und dass es eine Folge
> [mm](x_k, y_k)[/mm] geben müsste die gegen [mm]\vektor{0 \\ 0}[/mm]
> konvergiert, aber bei der die Folge der Funktionswerte
> [mm]f(x_k, y_k)[/mm] nicht gegen [mm]f(\vektor{0 \\ 0})[/mm] =0 konvergiert.
> Womit ja die Funktion in [mm]\vektor{0 \\ 0}[/mm] nach dem
> Folgenkriterium nicht stetig wäre. Ich kann solch eine
> Folge allerdings nicht finden. Vielleicht täuscht mich auch
> mein Gefühl und  
> f ist an dieser Stelle stetig.
> Wenn ja, wie könnte ich dies am besten nachweisen.
>  vielen dank schon mal!

Mit Polarkoordinaten $x = [mm] rcos(\phi), [/mm] y = [mm] rsin(\phi)$ [/mm] siehst Du

$|f(x,y)| = [mm] \bruch{r^3|cos^3(\phi)|}{r^2} \le [/mm] r = [mm] \wurzel{x^2+y^2}$ [/mm]

Damit: $|f(x,y)| [mm] \to [/mm] 0 = f(0,0)$ für $(x,y) [mm] \to [/mm] (0,0)$


FRED





>  
> Viele grüße,
>  schlupfinchen.


Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Mo 18.05.2009
Autor: schlumpfinchen123

Hallo fred,

kann man das auch anders zeigen, da wir in der Vorlesung noch nicht mit Polarkoordinaten gearbeitet haben!?



Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mo 18.05.2009
Autor: fred97


> Hallo fred,
>
> kann man das auch anders zeigen,

Ja,

für x [mm] \not= [/mm] 0 ist $|f(x,y)| [mm] \le \bruch{|x|^3}{x^2} [/mm] = |x|$

und

  für x = 0 ist  $|f(x,y)| = 0$

Insgesamt: [mm] $|f(x,y)|\le [/mm] |x|$


FRED



> da wir in der Vorlesung
> noch nicht mit Polarkoordinaten gearbeitet haben!?
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]