matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:24 So 15.03.2009
Autor: jos3n

Aufgabe
Ich habe ein Problem mit stetigkeitsaufgaben und würde mich freuen, wenn mir jemand weiterhilft.

So jetzt ganz banal:

Überfrüfe f(x)= [mm] x^2 [/mm] auf stetigkeit im Punk f(-1)


Dann fang ich mal an.
für alle [mm] \varepsilon [/mm] >0 gibt es ein [mm] \delta [/mm] >0, für alle x,y :

[mm] |x-x_{0}| [/mm] < [mm] \delta [/mm] => |f(x) - [mm] f(x_{0})| [/mm] < [mm] \varepsilon [/mm]

das ist quasi definition.

|x-(-1)| < [mm] \delta [/mm] => [mm] |x^2 [/mm] - [mm] (-1)^2| [/mm] < [mm] \varepsilon [/mm]

und wie mach ich nu weiter?

danke im vorraus

jo*

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 So 15.03.2009
Autor: schachuzipus

Hallo jos3n,



> Ich habe ein Problem mit stetigkeitsaufgaben und würde mich
> freuen, wenn mir jemand weiterhilft.
>  
> So jetzt ganz banal:
>  
> Überfrüfe f(x)= [mm]x^2[/mm] auf stetigkeit im Punk f(-1)
>  
>
> Dann fang ich mal an.
>  für alle [mm]\varepsilon[/mm] >0 gibt es ein [mm]\delta[/mm] >0, für alle
> x,y :
>  
> [mm]|x-x_{0}|[/mm] < [mm]\delta[/mm] => |f(x) - [mm]f(x_{0})|[/mm] < [mm]\varepsilon[/mm]
>  
> das ist quasi definition.
>  
> |x-(-1)| < [mm]\delta[/mm] => [mm]|x^2[/mm] - [mm](-1)^2|[/mm] < [mm]\varepsilon[/mm]

Genau das ist zu zeigen, dass für beliebiges [mm] $\varepsilon>0$ [/mm] bei geeigneter Wahl von [mm] $\delta$ [/mm] diese Implikation gilt

>  
> und wie mach ich nu weiter?

Nutze die 3.binomische Formel:

[mm] $|f(x)-f(-1)|=|x^2-1|=|(x+1)\cdot{}(x-1)|=|x+1|\cdot{}|x-1|$ [/mm]

Nun bedenke, dass [mm] $|x-1|=|(x+1)-2|\le|x+1|+2$ [/mm] gilt nach [mm] $\triangle$-Ungleichung [/mm]

Kommst du nun auf ein passendes [mm] $\delta$, [/mm] so dass für [mm] $|x+1|<\delta$ [/mm] gilt, dass [mm] $|x^2-1|<\varepsilon$ [/mm] ?


>  
> danke im vorraus
>  
> jo*


LG

schachuzipus

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 So 15.03.2009
Autor: jos3n

[mm] \delta [/mm] =  [mm] \bruch{\varepsilon}{2} [/mm] ??

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 So 15.03.2009
Autor: leduart

Hallo
Hast du die [mm] \delta [/mm] mal eingesetz, und gezeigt, dass du dan , [mm] \epsilon [/mm] erreichst?
Du hast ne ausfuehrliche Antwort gekriegt, wieso verraetst du uns dann nicht, wie du auf die Idee kommst .
Gruss leduart

Bezug
                                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 So 15.03.2009
Autor: jos3n

meinst jetzt mich? ich hab nämlich gerade kein plan! ist das richtig mit [mm] \varepsilon [/mm] halbe?

Bezug
                                
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 So 15.03.2009
Autor: jos3n

steht dann da:

[mm] \delta^2 [/mm] +2 < [mm] \varepsilon [/mm] oder?

Bezug
                                        
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 So 15.03.2009
Autor: leduart

Hallo
Du wirst doch noch [mm] \delta*(delta+2) [/mm] multiplizieren koennen auch ohne Plan.
Gruss leduart

Bezug
                                                
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 16.03.2009
Autor: jos3n

ja richtig, also

[mm] \delta^2 [/mm] + [mm] 2\delta [/mm] < [mm] \varepsilon [/mm]

dann wählt man also [mm] \varepsilon [/mm] = 2 und dazu [mm] \delta [/mm] = 1/2

??

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]