matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Stetigkeit
Stetigkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Lösungshilfe
Status: (Frage) beantwortet Status 
Datum: 17:18 Mi 16.04.2008
Autor: Mathegirl

Aufgabe
Gegeben sei eine Funktion [mm] f:\IR^2 \to\IR [/mm] die im [mm] \IR^2 [/mm] partiell differenzierbar ist. Die partiellen Ableitungen seien beschränkt, d.h.

[mm] \exists [/mm] M>0: [mm] |\partial_if(x)|\leM \forallx\in\IR^2, [/mm]  i=1,2

Zeigen sie, dass f im [mm] \IR^2 [/mm] stetig ist.

Könnt ihr mir vielleicht Tipps und eine Hilfe zur Lösung geben? Ich komme mit der Aufgabe absolut nicht klar und weiß auch nicht, welche Stetigkeitskriterien ich anwenden muss und was genau ich mit dem Ausdruck anfangen soll  :(

mfg mathegirl

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Mi 16.04.2008
Autor: SEcki


> Gegeben sei eine Funktion [mm]f:\IR^2 \to\IR[/mm] die im [mm]\IR^2[/mm]
> partiell differenzierbar ist. Die partiellen Ableitungen
> seien beschränkt, d.h.
>  
> [mm]\exists[/mm] M>0: [mm]|\partial_if(x)|\leM \forallx\in\IR^2,[/mm]  
> i=1,2

[Bitte beim Schreiben mit dem Editor Leerzeichen benutzen an den richtigen Stellen.]

>  
> Zeigen sie, dass f im [mm]\IR^2[/mm] stetig ist.
>  
> Könnt ihr mir vielleicht Tipps und eine Hilfe zur Lösung
> geben?

Roadmap: OBdA [m](x,y)=(0,0)[/m] und [m]f(0,0)=0[/m], dann [m]f(x,y)=f(x,y)-f(x,0)+f(x,0)-0[/m]. Mit MWS aus dem 1-dim und den Vorraussetzungen folgt nun [m]|f(x,y)-f(x,0)|\le M y[/m] und [m]|f(x,0)|\le M x[/m], insgesamt also [m]|f(x,y)|\le M ||(x,y)||_1[/m] woraus Stetigkeit von f folgt. (also eigentlich der komplette Beweis ... die Idee ist: den direkten Weg von [m]x,y[/m] nach 0 durch Wege auf den Achsen ersetzen, hier kann man partielle ableiten und mit MWS eben die Differenzen nach oben abschätzen - bitte aufmalen!)

Hübsche Aufgabe! Weitere Fragen: Kann es sein, dass Richtungsableitungen nicht existieren? (keine Ahnung) Kann es sein, dass (falls es immer Richtungsableitugen gibt), diese in einem Pukt nicht Linearkombinationen der partiellen sind (ich denke ja- ein varierendes Gradenbündel um die 0, daß außerhalb glatt variert mit partiellen Ableitungen 0).

> Ich komme mit der Aufgabe absolut nicht klar und
> weiß auch nicht, welche Stetigkeitskriterien ich anwenden
> muss und was genau ich mit dem Ausdruck anfangen soll  :(

Welche Kriterien hast du denn?

SEcki



Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:43 So 20.04.2008
Autor: Mathegirl

Vielen Dank für deine Antwort *freu*  Da macht doch Mathe gleich mal wieder ein bissel mehr Spaß, wenn man auch weiter kommt! Und das ist die komplette Lösung der Aufgabe???? Also dann konnte ich es so halbwegs nachvollziehen.

Was sind denn Richtungsableitungen??

"den direkten Weg von  nach 0 durch Wege auf den Achsen ersetzen, hier kann man partielle ableiten und mit MWS eben die Differenzen nach oben abschätzen - bitte aufmalen!"  

- Wie meinst du das denn?

mfg mathegirl




Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 So 20.04.2008
Autor: SEcki


> Und das ist die komplette Lösung der
> Aufgabe????

Schon - allerdings musst du es verstehen, darum geht es.

> Was sind denn Richtungsableitungen??

Also eine Ableitung in eine beliebige Richtung, also in Richtung eines beliebigen Vektors v - [m]\partial_v f(x)=\lim_{t\to 0}\bruch{f(x+t*v)-f(x)}{||t*v||}[/m]

> "den direkten Weg von  nach 0 durch Wege auf den Achsen
> ersetzen, hier kann man partielle ableiten und mit MWS eben
> die Differenzen nach oben abschätzen - bitte aufmalen!"  
>
> - Wie meinst du das denn?

Den Punk [m](x,y)[/m] kann man mit dem Nullpunkt mit der Gerade verbinden - anstatt auf diesem Weg, laufe ich im Beweis quasi auf den Koordinnatenachsen nach 0 und schätze ab.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]