matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Stetigkeit
Stetigkeit < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 22:04 Mo 20.02.2006
Autor: Dark.Spirit

Aufgabe
Bestimmen sie s in Abhängigkeit von t so, dass f an der Stelle [mm] x_{0} [/mm] stetig ist.

a) f(x) = { sx-2 für x [mm] \ge [/mm] 2;  [mm] \bruch{1}{2}tx^{2} [/mm] für x<2 } [mm] x_{0}=1 [/mm]
b) f(x) = { [mm] x^{3} [/mm] für x [mm] \le [/mm] 1; [mm] sx^{2}+t [/mm] für x>1 } [mm] x_{0}=1 [/mm]

Zuerst: Ich hatte nach kurzen Startschwierigkeiten kein Problem damit, die a)-Aufgabe zu lösen (bekam t=1; s=2 raus, was einer Überprüfung im GTR stand hielt).

Nun, ich weiß nicht genau was ich falsch mache, aber bei der b) komme ich nicht weiter. Wie bei der a) wollte ich es mit ein paar Gleichsetzungen versuchen. Meine (erfolglose) Vorgehensweise:

[mm] x^{3}=sx^{2}+t [/mm]

x wird durch [mm] x_{0} [/mm] ersetzt:
1=s+t


Egal, wie ich von hier aus nun vorging - es führte irgendwie zu nichts.

1.) Nach s umstellen:
s=1-t

Gleichsetzen mit Ursprungsterm [mm] sx^{2}+t: [/mm]
s+t=0  [mm] \gdw [/mm] s=-t

1-t=-t

Führt für mich nicht wirklich weiter...

2.) Kompletterme gegeneinander:
1-s-t=t+s
[mm] \gdw [/mm] 1-2s-2t=0
[mm] \gdw [/mm] 0.5-s-t=0

Hilft auch nicht besonders. Ich weiß nicht, aber ich sehe gerade einfach nicht richtig, was ich falsch mache und dreh mich nur im Kreis, habe schon alles mögliche versucht (das "Ewig-vor-einer-eigentlich-einfachen-Aufgabe-rumsitz-Phänomen") und wäre ganz dankbar für einen kleinen Denkanstoß!

mfg,
Dark.Spirit

        
Bezug
Stetigkeit: so gut wie fertig!
Status: (Antwort) fertig Status 
Datum: 22:25 Mo 20.02.2006
Autor: Loddar

Hallo Dark.Spirit!


Bist Du sicher, dass es bei der 1. Aufgabe $x \ = \ [mm] \red{1}$ [/mm] heißen soll und nicht $x \ = \ [mm] \red{2}$ [/mm] ?


Denn das genannte Ergebnis kommt mir schon etwas komisch vor ...

Bei der 2. Aufgabe hast du es nämlich völlig richtig gemacht, allerdings den falschen Schluss gezogen.


> x wird durch [mm]x_{0}[/mm] ersetzt:
> 1=s+t

Genauer ist es eine Grenzwertbetrachtung für [mm] $x\rightarrow [/mm] 1$ , aber das Ergebnis stimmt so!


> Egal, wie ich von hier aus nun vorging - es führte
> irgendwie zu nichts.
>  
> 1.) Nach s umstellen:
> s=1-t

Und genau hier bist Du fertig! Du sollst ja das $s_$ in Abhängigkeit von $t_$ angeben: $s \ = \ s(t) \ = \ 1-t$ .


Gruß
Loddar


Bezug
                
Bezug
Stetigkeit: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:58 Mo 20.02.2006
Autor: Dark.Spirit

Vielen Dank! Also die erste Aufgabe erweckte bei mir den Anschein, als gebe es nur eine richtige Lösung und ich habe s und t so auflösen können, dass ich Zahlen (nicht nur Abhängigkeiten) erhalten habe. Mangels "verwertbaren" Termen ist so ein Vorgehen für b) wohl nicht möglich, dafür bekommt man ja aber eine Funktionsschaar - scheint mir irgendwie entgangen zu sein, naja.

> Genauer ist es eine Grenzwertbetrachtung für [mm]x\rightarrow 1[/mm]
> , aber das Ergebnis stimmt so!

Okay, mit Gleichungen geht's wesentlich schneller in diesem Fall. Wenn ausführliche Beweisführung verlangt wird nimmt man natürlich die Grenzwertbetrachtung ;-)

mfg,
Dark.Spirit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]