matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Di 10.01.2006
Autor: SirBigMac

Aufgabe
Entscheiden Sie, ob die folgenden Aussage wahr oder falsch sind und begründen Sie Ihre Antwort:

Sei D [mm] \subset \IC. [/mm] Sind f, g: D [mm] \to \IR [/mm] stetig, dann sind auch x [mm] \mapsto [/mm] max(f(x),g(x)); x [mm] \mapsto [/mm] min(f(x),g(x)) stetig.

Hallo!

Hab leider noch ein paar Probleme mit dem Stetigkeitsbegriff.
Die Definition von Stetigkeit ist mir zwar bekannt, anschaulich heißt das ja auch "man kann die Funktion ohne mit dem Stift abzusetzen durchzeichnen". Allerdings hab ich keine Idee wie man Stetigkeit wie bei obiger Aufgabe zeigt oder widerlegt! Irgendwie hab ich die Definition wohl doch noch nicht so verstanden...

Wär toll wenn mir jemand helfen könnte!

Lg SirBigMac

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Di 10.01.2006
Autor: Stefan

Hallo!

Es gilt:

[mm] $\max\{f(x),g(x)\} [/mm] = [mm] \frac{1}{2} [/mm] (|f(x) - g(x)| + f(x) + g(x))$.

Daher kannst du die Stetigkeit auf die Stetigkeit der bekannten Funktionen und übliche Stetigkeitssätze (die Summe stetiger Funktionen ist stetig,...) zurückführen.

Findest du eine ähnliche Darstellung des Minimums?

Liebe Grüße
Stefan

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Di 10.01.2006
Autor: SirBigMac


> [mm] \max\{f(x),g(x)\} [/mm] = [mm] \frac{1}{2} [/mm] (|f(x) - g(x)| + f(x) + g(x)).

Wie kommt man auf sowas?


> Findest du eine ähnliche Darstellung des Minimums?

Das Minimum müsste demnach ja [mm] \min\{f(x),g(x)\} [/mm] = [mm] \frac{1}{2} [/mm] (|f(x) - g(x)| - f(x) - g(x)) sein, oder?

D.h. die Aussage ist wahr, oder?

Leider hatten wir noch keinen Satz, dass die Summe stetiger Funktionen stetig sind, aber ich denk des kommt relativ bald.

Lg SirBigMac

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 10.01.2006
Autor: Minimum

Hallo!

> > [mm]\max\{f(x),g(x)\}[/mm] = [mm]\frac{1}{2}[/mm] (|f(x) - g(x)| + f(x) +
> g(x)).
>  
> Wie kommt man auf sowas?
>  
>
> > Findest du eine ähnliche Darstellung des Minimums?
>  
> Das Minimum müsste demnach ja [mm]\min\{f(x),g(x)\}[/mm] =
> [mm]\frac{1}{2}[/mm] (|f(x) - g(x)| - f(x) - g(x)) sein, oder?

Fast:

[mm] $\min\{f(x),g(x)\} [/mm] = [mm] \frac{1}{2} [/mm] (f(x) + g(x) - |f(x) - g(x)|)$.

> D.h. die Aussage ist wahr, oder?

[ok]
  
Liebe Grüße
Samuel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]