matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Stetigkeit
Stetigkeit < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Epsilon-Delta-Kriterium
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 15.11.2014
Autor: Skyrula

Aufgabe
[mm] f:\IR [/mm] \  {0} [mm] \rightarrow \IR, [/mm] x [mm] \rightarrow \frac{1}{x} [/mm]

Beweisen sie die Stetigkeit.

Hallo zusammen,
ich möchte die Stetigkeit dieser Funktion beweisen. Dafür habe ich das Epsilon-Delta-Kriterium gewählt, welches besagt:

Die Funktion f:D [mm] \rightarrow \IR [/mm] ist stetig in [mm] \varepsilon \in [/mm] D, wenn zu jedem [mm] \varepsilon [/mm] >0 ein [mm] \delta [/mm] >0 existiert, sodass für alle x [mm] \in [/mm] D mit [mm] |x-\varepsilon|< \delta [/mm] gilt: [mm] |f(x)-f(\varepsilon)|<\varepsilon [/mm]

Mein Ansatz:

Seien o.B.d.A. [mm] x,x_{0} \in \IR: 0≤x_{0}≤x [/mm] mit [mm] \varepsilon [/mm] >0

[mm] |f(x)-f(x_{0}|=|\frac{1}{x}-\frac{1}{x_{0}}|<\varepsilon [/mm]
          [mm] \gdw \frac{1}{x}-\frac{1}{x_{0}}<\varepsilon [/mm]
          [mm] \gdw \frac{1}{x}<\varepsilon [/mm] + [mm] \frac{1}{x_{0}} [/mm]
          [mm] \gdw x^{-1}<\varepsilon [/mm] + [mm] x_{0}^{-1} [/mm]

Nun weiß ich nicht mehr weiter. Wäre dankbar für ein Tipps und Korrektur falls (ich denke schon) nötig.

Vielen Dank!


        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Sa 15.11.2014
Autor: Thomas_Aut

Hallo,


Kennst du die Definition von Stetigkeit über Folgen?
Falls ja so bist du hier wesentlich schneller fertig.

Falls nein und du es unbedingt per eps-delta-Krit. machen willst dann :


Finde ein [mm] \delta [/mm] s.d mit [mm] $0<|x-x_{0}|<\delta$ [/mm] auch [mm] $|\frac{1}{x}-\frac{1}{x_{0}}|<\epsilon$ [/mm] gilt.

Finde nun heraus wie [mm] \delta [/mm] zu wählen ist damit diese Bedingung [mm] \forall [/mm] x [mm] \in \mathbb{R} \backslash \{0\} [/mm] und beliebiges [mm] \epsilon [/mm] > 0 gilt.

Also: [mm] $|\frac{1}{x}-\frac{1}{x_{0}}| [/mm] = [mm] \frac{|x-x_{0}|}{|x||x_{0}|} [/mm] < [mm] \epsilon [/mm] $.
Schätze dazu :
[mm] $\frac{1}{|x||x_{0}|}$ [/mm] geschickt nach oben ab.

Setze dazu (trickreich) [mm] |x-x_{0}| [/mm] = [mm] \frac{|x_{0}|}{2}. [/mm]

Finde nun eine Schranke für |x| (bedenke: Dreiecksungleichung )


Gruß Thomas

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Sa 15.11.2014
Autor: Skyrula

Vielen Dank für die Antwort!

Ich habe dazu zwei Fragen:

Ich muss leider das eps-delta-Krit. verwenden. Wie genau kommst du auf die Abschätzung von $ [mm] \frac{1}{|x||x_{0}|} [/mm] $,

und wie kommst du von da durch deine "trickreiche" Umformung auf  $ [mm] |x-x_{0}|=\frac{|x_{0}|}{2}. [/mm] $?

Vielen Dank!


Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Sa 15.11.2014
Autor: Thomas_Aut

[mm] |x-x_{0}| [/mm] = [mm] \frac{x_{0}}{2} [/mm] ist frei gewählt - diese Wahl wird allerdings später praktisch werden.

Wir können

[mm] \frac{1}{|x||x_{0}|} [/mm] durch [mm] \frac{2}{|x_{0}|^2} [/mm] abschätzen. (Wieso geht das ? - Wende die Dreiecksungleichung an )

wenn du das gemacht hast, dann bist du schon fast fertig - du kannst dann

[mm] \frac{|x-x_{0}|}{|x||x_{0}|} [/mm] nach oben abschätzen und zwar durch ... ?

Gruß THomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]