matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetige Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetige Fkt.
Stetige Fkt. < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Fkt.: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:29 Mi 19.05.2010
Autor: SnafuBernd

Aufgabe
Es sei a,b [mm] \in \IR [/mm] und f : [mm] \IR ->\IR [/mm]  sei definiert durch:
f(x) = [mm] \frac{x^4 -10x^2 + 9}{x^2 -4x +3} [/mm] für x [mm] \in \IR [/mm] \  {1,3}
          a für x =1
          b für x = 3


Können a und b so gewählt werden, dass f stetig auf [mm] \IR [/mm] ist?

Einen angenehmen Abend,

so... :
[mm] \frac{x^4 -10x^2 + 9}{x^2 -4x +3} [/mm] = [mm] x^2 [/mm] +4x + 3 (Polynomdivision)
wegen [mm] \limes_{x\rightarrow 1} x^2 [/mm] +4x + 3 = 8
[mm] \limes_{x\rightarrow 3} x^2 [/mm] +4x + 3 = 24
muss gelten :a =  f(1) = 8 und b= f(3) = 24

Snafu

        
Bezug
Stetige Fkt.: kürzen
Status: (Antwort) fertig Status 
Datum: 22:38 Mi 19.05.2010
Autor: Al-Chwarizmi


> Es sei a,b [mm]\in \IR[/mm] und f : [mm]\IR ->\IR[/mm]  sei definiert durch:
>  f(x) = [mm]\frac{x^4 -10x^2 + 9}{x^2 -4x +3}[/mm] für x [mm]\in \IR[/mm] \  
> {1,3}
>            a für x =1
> b für x = 3
>  
>
> Können a und b so gewählt werden, dass f stetig auf [mm]\IR[/mm]
> ist?
>  Einen angenehmen Abend,
>  
> so... :
>  [mm]\frac{x^4 -10x^2 + 9}{x^2 -4x +3}[/mm] = [mm]x^2[/mm] +4x + 3
> (Polynomdivision)
>  wegen [mm]\limes_{x\rightarrow 1} x^2[/mm] +4x + 3 = 8
>  [mm]\limes_{x\rightarrow 3} x^2[/mm] +4x + 3 = 24
> muss gelten :a =  f(1) = 8 und b= f(3) = 24
>  
> Snafu


Guten Abend Snafu,

zerlege den Zähler und den Nenner des Funktionsterms
komplett in Faktoren (das ist leicht zu schaffen) und
vergleiche den Funktionsterm mit seiner gekürzten
Version. Dabei muss man zwar betr. Definitionsbereich
vorsichtig sein, aber die Aufgabe sollte sich durch diese
Überlegungen leicht lösen lassen.


LG     Al-Chw.


Bezug
                
Bezug
Stetige Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Do 20.05.2010
Autor: SnafuBernd

Hi,

wie heißt das, dass meine Lösung komplett falsch ist, habe sie analog zu unseren Übungen gemacht und dachte deswegen müsste es so stimmen?

Snafu

Bezug
                        
Bezug
Stetige Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Do 20.05.2010
Autor: abakus


> Hi,
>  
> wie heißt das, dass meine Lösung komplett falsch ist,
> habe sie analog zu unseren Übungen gemacht und dachte
> deswegen müsste es so stimmen?

Hallo,
das sieht gut aus. Ich ergänze mal ein Bild:
[Dateianhang nicht öffentlich]
Gruß Abakus

>  
> Snafu


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
Stetige Fkt.: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Do 20.05.2010
Autor: Steffi21

Hallo abakus,

a=8 und b=24 kann geschrieben werden, aber nicht a=f(1) und b=f(3), zum Definitionsbereich der Funktion gehören 1 und 3 nicht

Steffi

Bezug
                                        
Bezug
Stetige Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Do 20.05.2010
Autor: SnafuBernd

Hi,

der angegebene Definitionsbereich gilt doch nur für den Bruchterm. Es gilt aber f: [mm] \IR [/mm] -> [mm] \IR [/mm] , d.h. 1 und 3 liegen drinne, uns somit ist auch a=f(1) richtig.
Richtig?
Snafu

Bezug
                                                
Bezug
Stetige Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Do 20.05.2010
Autor: Al-Chwarizmi


> Hi,
>  
> der angegebene Definitionsbereich gilt doch nur für den
> Bruchterm. Es gilt aber f: [mm]\IR[/mm] -> [mm]\IR[/mm] , d.h. 1 und 3 liegen
> drinne, uns somit ist auch a=f(1) richtig.
>  Richtig?
>  Snafu


Ja, das ist richtig !
Steffi hat wohl die zusätzlichen Teile der Definition von f
übersehen.


LG     Al-Chw.


Bezug
                        
Bezug
Stetige Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Do 20.05.2010
Autor: Al-Chwarizmi


> Hi,
>  
> wie heißt das, dass meine Lösung komplett falsch ist,
> habe sie analog zu unseren Übungen gemacht und dachte
> deswegen müsste es so stimmen?
>  
> Snafu



Hallo Snafu,

entschuldige bitte, dass ich zuerst deine Ergebnisse gar
nicht geprüft hatte: sie stimmen natürlich.
Ich dachte einfach, dass man zuallererst den Funktions-
term kürzen sollte, um keine komplizierte Grenzwert-
rechnung zu brauchen.


LG    Al-Chw.


Bezug
                                
Bezug
Stetige Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Do 20.05.2010
Autor: SnafuBernd

Hi,

kein Ding, hatte es auch so verstanden, war jedoch trotzdem verwirrt... :)

Snafu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]