matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Stereometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Stereometrie
Stereometrie < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stereometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 09.03.2004
Autor: EOSMAN

Wie berechnet man eine solche Aufgabe:
Ein Kegel mit dem Volumen V= 1000 cm³ und der Höhe h = 19,5 cm
wird parallel zur Grundfläche im Abstand h1 = 8,4 cm abgeschnitten.
Auf die Schnittfläche wird ein anderer Kegel mit der Matellinie s= 6.0cm aufgesetzt. Berechnen sie das Volumen des entstandenen Gesamtkörpers.
Die Skizze kann ich auf anfrage emailen!!
Hoffentlich kann mir jemand helfen!!!!
Danke EOSMAN

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Stereometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Di 09.03.2004
Autor: Marc

Hallo EOSMANN,

willkommen im MatheRaum! :-)

Ja, stelle die Skizze hier ins Forum, falls du sie gerade zur Hand hast, oder maile sie mir zu, dann stelle ich sie rein.

Alles Gute,
Marc



Bezug
        
Bezug
Stereometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Di 09.03.2004
Autor: Oliver

Hallo,

erstmal zur Benennung:
$h$ - Gesamthöhe des Ursprungskegels
[mm] $h_1$ [/mm] - Höhe des Kegelstumpfes nach Abschneiden der Spitze
[mm] $h_2$ [/mm] - Höhe des aufgesetzten Kegels
[mm] $r_1$ [/mm] - Radius des Ursprungskegels/Kegelstumpfes
[mm] $r_2$ [/mm] - Radius des aufgesetzten Kegels
$V$ - Volumen des Ursprungskegels
[mm] $V_1$ [/mm] - Volumen des Kegelstumpfes
[mm] $V_2$ [/mm] - Volumen des aufgesetzten Kegels

Um die Aufgabe zu lösen, brauchst Du einige Standardkniffe, die bei diesem Aufgabentypus immer wieder benötigt werden: Strahlensatz und Satz des Pythagoras.

Dazu noch die normale Formel zur Berechnung des Kegelvolumens [mm] ($V=\frac{1}{3} r^2 [/mm] h [mm] \pi$) [/mm] und wir haben alles zusammen zur Beantwortung:

1. Berechnung des Radius' [mm] $r_1$: [/mm]
Du hast das Volumen und die Höhe gegeben, also bekommst Du den Radium durch die Volumenformel
[mm]V=\frac{1}{3}h {r_1}^2 \pi[/mm]

2. Berechnung des Radius' [mm] $r_2$: [/mm]
Hier benutzt Du den Strahlensatz. Da der Schnitt [i|parallel zur Grundfläche[/i] erfolgte, gilt das Verhältnis
[mm]\frac{h}{h-h_1} = \frac{r_1}{r_2}[/mm]

3. Berechnung des Volumens [mm] $V_1$: [/mm]
Das Volumen des Stumpfes ist das Gesamtvolumen abzgl. der Spitze, also
[mm]V_1 = V - \frac{1}{3} {r_2}^2 (h-h_1) \pi[/mm]

4. Berechnung des Volumens [mm] $V_2$: [/mm]
Die Höhe des aufgesetzten Kegels berechnest Du mit dem Satz des Pythagoras, da Mantel, Höhe und Radius ein rechtwickliges Dreieck bilden. Das Volumen berechnest Du anschließend wie üblich mit obiger Formel.

5. Berechnung des Gesamtvolumens $V$:
Jetzt brauchst Du nur noch das Volumen des Stumpfes und des aufgesetzten Kegels addieren.

Versuch' doch mal die fehlenden Schritte selbst zu rechnen und poste dann hier Deine (Zwischen-)Ergebnisse. Wir schauen dann mal drüber.

Gruß
Oliver

P.S. @marc: Habe vorhin gemerkt, dass man ja auch "$" zum Setzen von mathematischem Text verwenden kann. Wäre klasse, wenn Du das noch in die Anleitung aufnehmen könntest, nimmt einem eine Menge Arbeit ab.

Bezug
                
Bezug
Stereometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Di 09.03.2004
Autor: Marc

Hallo Oliver,

> P.S. @marc: Habe vorhin gemerkt, dass man ja auch "$" zum
> Setzen von mathematischem Text verwenden kann. Wäre klasse,
> wenn Du das noch in die Anleitung aufnehmen könntest, nimmt
> einem eine Menge Arbeit ab.

Das Problem mit den $-Zeichen ist, dass sie nicht erkannt werden, wenn sie mehrzeilig gesetzt werden, z.B.
$ x= 5
y = 2 $
wird nicht als Formel gesetzt.

(Der Grund für die Einzeiligkeit ist übrigens oben zu sehen: Es ist schwer zu erkennen, dass das erste Dollarzeichen nicht der Anfang einer Formel ist.)

Um die Leser nicht zusätzlich zu verwirren, habe ich auf die Dokumentation diese Features verzichtet.

Übrigens kannst du die Anleitung ja auch selbst ändern :-), mit dem Link "Inhalt dieser Seite bearbeiten".

Viele Grüße,
Marc.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]