matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitSteitigkeit in top. Räumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Steitigkeit in top. Räumen
Steitigkeit in top. Räumen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steitigkeit in top. Räumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Sa 09.01.2010
Autor: Jodeldiplom

Hallo,


ich habe eben eine Verständnisfrage, die glaube ich, recht einfach zu erklären sein müsste (hoffe ich ;-) ) Nur kann ich es mir gerade selber nicht so erklären.

Ich habe die Aufgabe, alle stetigen Funktionen f:X--> C zu bestimmen, wobei auf X die grobe Topologie ist.

Um stetig zu sein, müssen dir Urbilder offener Mengen ja wieder offen sein. Mögliche Urbilder sind hier die leere Menge und der ganze Raum X, welche beide als Elemente der Topologie offen sind.
Warum sind jetzt nicht alle Abbildungen f stetig, sondern nur die konstanten?

Dankeschön und lieben Gruß

        
Bezug
Steitigkeit in top. Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Sa 09.01.2010
Autor: felixf

Hallo!

> ich habe eben eine Verständnisfrage, die glaube ich, recht
> einfach zu erklären sein müsste (hoffe ich ;-) ) Nur kann
> ich es mir gerade selber nicht so erklären.
>  
> Ich habe die Aufgabe, alle stetigen Funktionen f:X--> C zu
> bestimmen, wobei auf X die grobe Topologie ist.
>  
> Um stetig zu sein, müssen dir Urbilder offener Mengen ja
> wieder offen sein. Mögliche Urbilder sind hier die leere
> Menge und der ganze Raum X, welche beide als Elemente der
> Topologie offen sind.
>  Warum sind jetzt nicht alle Abbildungen f stetig, sondern
> nur die konstanten?

Angenommen, $f : X [mm] \to \IC$ [/mm] sei nicht konstant. Dann gibt es $x, y [mm] \in [/mm] X$ mit $f(x) [mm] \neq [/mm] f(y)$. Jetzt gibt es eine offene Menge $O [mm] \subseteq \IC$ [/mm] mit $f(x) [mm] \in [/mm] O$, $f(y) [mm] \not\in [/mm] O$ (etwa eine [mm] $\varepsilon$-Kugel [/mm] um $f(x)$ mit Radius [mm] $\frac{1}{2} [/mm] |f(x) - f(y)|$). Dann ist [mm] $f^{-1}(O)$ [/mm] jedoch eine Teilmenge von $X$, die zwar $x$, aber nicht $y$ enthaelt.

Warum kann $f$ jetzt nicht stetig sein?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]