matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieSteinerscher Verschiebungssatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Steinerscher Verschiebungssatz
Steinerscher Verschiebungssatz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steinerscher Verschiebungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 So 30.11.2008
Autor: Caroline

Hallo alle zusammen :-),

ich komme in einer Aufgabe in Stochastik leider nicht weiter:

------------------------

X reellwertig und integrierbare Zufallsgröße. a [mm] \in \IR. [/mm]

Zu zeigen:

E(X - [mm] a)^{2} [/mm] = var(X) + (EX - [mm] a)^{2} [/mm]

Folgern Sie: EX = argmin [mm] E(X-a)^{2} [/mm] (läuft über a [mm] \in \IR) [/mm]

------------------------

Also ich hab jetzt mal oben in der Formel ein wenig umgeformt und letzendlich steht dann da:


zu zeigen:

E(X - [mm] a)^{2} [/mm] = [mm] E(X^{2}) [/mm] - 2aE(X) + [mm] a^{2} [/mm]

So jetzt weiß ich aber leider nicht weiter, soll ich das jetzt schon alles ins Integral einsetzen und dann dort umformen oder wie, habt ihr einen Ansatz für mich?????

LG

Caro

        
Bezug
Steinerscher Verschiebungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 So 30.11.2008
Autor: rainerS

Hallo Caro!


> X reellwertig und integrierbare Zufallsgröße. a [mm]\in \IR.[/mm]
>  
> Zu zeigen:
>  
> [mm]E(X - a)^{2} = var(X) + (EX - a)^{2}[/mm]
>  
> Folgern Sie: EX = argmin [mm]E(X-a)^{2}[/mm] (läuft über a [mm]\in \IR)[/mm]
>  
> ------------------------
>  
> Also ich hab jetzt mal oben in der Formel ein wenig
> umgeformt und letzendlich steht dann da:
>  
>
> zu zeigen:
>
> [mm]E(X - a)^{2} = E(X^{2}) - 2aE(X) + a^{2}[/mm]
>  
> So jetzt weiß ich aber leider nicht weiter, soll ich das
> jetzt schon alles ins Integral einsetzen und dann dort
> umformen oder wie, habt ihr einen Ansatz für mich?????

Ja, setze die linke Seite in das Integral ein und nutze die Linearität des Integrals aus! Dann bist du sofort fertig.

Viele Grüße
   Rainer

Bezug
                
Bezug
Steinerscher Verschiebungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 So 30.11.2008
Autor: Caroline

Danke für die Antwort, hatte es auch vor deiner Antwort schon schnell eingesetzt und gesehen, dass es dann ganz einfach ist :-D

Vllt. hätt ich das sollen vor meiner Frage machen ;-)

Allerdings weiß ich nicht wie ich rechtfertigen soll dass EX = argmin [mm] E(X-a)^{2} [/mm] ist :-D ich glaube das ist wohl eher das schwere an der Aufgabe ;-)

Trotzdem danke für deine Antwort :-)

LG

Caro

Bezug
                        
Bezug
Steinerscher Verschiebungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 So 30.11.2008
Autor: rainerS

Hallo Caro!

> Danke für die Antwort, hatte es auch vor deiner Antwort
> schon schnell eingesetzt und gesehen, dass es dann ganz
> einfach ist :-D
>  
> Vllt. hätt ich das sollen vor meiner Frage machen ;-)
>  
> Allerdings weiß ich nicht wie ich rechtfertigen soll dass
> EX = argmin [mm]E(X-a)^{2}[/mm] ist :-D ich glaube das ist wohl eher
> das schwere an der Aufgabe ;-)

Wie man's nimmt ;-)

Du suchst das Mimimum von [mm] $E((X-a)^2)$ [/mm] (bzgl. a). Nach der gerade bewiesenen Beziehung ist dies minimal, wenn

[mm]var(X) + (E(X)-a)^2 [/mm]

minimal ist. Für welches a ist das der Fall?

Viele Grüße
   Rainer

Bezug
                                
Bezug
Steinerscher Verschiebungssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 So 30.11.2008
Autor: Caroline

Ah okay :-D

Nochmals VIELEN DANK :-)

LG

Caro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]