matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenSteckbriefaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 So 28.11.2010
Autor: Amicus

Aufgabe
Eine ganzrationale Funktion 3. Grades hat im Nullpunkt die Steigung m [mm] =\bruch{3}{2}t [/mm]  und im Punkt P(3t|0) die Steigung 0. Außerdem gilt: t > 0.

a) Stellen Sie die Gleichung der Funktion ft(x) auf!





Aus der Aufgabenstellung geht ja hervor:
ft(0) = 0  =>  d=0
ft'(0) = [mm] -\bruch{3}{2}t [/mm]  =>  [mm] c=\bruch{3}{2}t [/mm]
ft(3t) = 0   [mm] 27t^3 [/mm] a + [mm] 9t^2 [/mm] b - [mm] \bruch{3}{2}t [/mm] = 0
ft'(3t) = 0   [mm] 27t^2 [/mm] a + 6tb - [mm] \bruch{3}{2}t [/mm] = 0

Wie Muss das LGS jetzt gelöst werden? Dass das t irgendeine beliebige Zahl > 0 ist weiß ich, aber das macht es trotzdem nicht einfacher für mich, weil mich das t doch etwas verwirrt! Bislang mussten wir das noch nicht mit Funktionsscharen machen, jetzt haben wir das aber als Übungsaufgabe bekommen!

        
Bezug
Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 So 28.11.2010
Autor: Zwerglein

Hi, Amicus,

> Eine ganzrationale Funktion 3. Grades hat im Nullpunkt die
> Steigung m [mm]=\bruch{3}{2}t[/mm] und im Punkt P(3t|0) die
> Steigung 0. Außerdem gilt: t > 0.
>
> a) Stellen Sie die Gleichung der Funktion ft(x) auf!
>
>
>
>
> Aus der Aufgabenstellung geht ja hervor:
> ft(0) = 0 => d=0
> ft'(0) = [mm]-\bruch{3}{2}t[/mm] => [mm]c=\bruch{3}{2}t[/mm]

Ist denn die Steigung nun +3/2*t oder -3/2*t ??

> ft(3t) = 0 [mm]27t^3[/mm] a + [mm]9t^2[/mm] b - [mm]\bruch{3}{2}t[/mm] = 0

Also: Ich gehe mal davon aus, dass m = -(3/2)*t
vorgegeben war!

Trotzdem steckt hier ein Fehler drin, nämlich:
ft(3t) = 0 => [mm] 27t^{3}a [/mm] + [mm] 9t^{2}b -\bruch{3}{2}t*\red{3t} [/mm] = 0

Und das kannst Du vereinfachen (da t [mm] \not= [/mm] 0), indem Du durch [mm] 9t^{2} [/mm] teilst:
3at + b - 0,5 = 0 <=> 3at + b = 0,5. (III)

> ft'(3t) = 0 [mm]27t^2[/mm] a + 6tb - [mm]\bruch{3}{2}t[/mm] = 0

Analog zu vorher teilst Du hier durch 3t:

9at + 2b - 0,5 = 0  <=> 9at + 2b = 0,5 (IV)

> Wie Muss das LGS jetzt gelöst werden? Dass das t
> irgendeine beliebige Zahl > 0 ist weiß ich, aber das macht
> es trotzdem nicht einfacher für mich, weil mich das t doch
> etwas verwirrt!

Du musst nur a, b, c und d berechnen; das t wird als Parameter in den Lösungen übrig bleiben.
Z.B. hast Du ja c schon ausgerechnet: c = -(3/2)*t.

Analog berechnest Du nun a und b.

Dazu kannst Du z.B. die Gleichung (III) nach b auflösen und in (IV) einsetzen. Dann kannst Du daraus a ausrechnen und anschließend b.  

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]