matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenSteckbrief Funktionsscharr
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Steckbrief Funktionsscharr
Steckbrief Funktionsscharr < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbrief Funktionsscharr: xe^-tx²
Status: (Frage) beantwortet Status 
Datum: 21:24 Mo 01.12.2008
Autor: koemie

Aufgabe 1
Untersuche die Funktion xe^-tx², wobei t<0 ist und xE aus den reellen Zahlen

Aufgabe 2
Untersuche die Funktion xe^-tx², wobei t<0 ist und xEaus den reellen Zahlen

Die symmetrie und das globale verhalten hab ich schon, nun weiß ich leider nicht wie die ableitungen richtig lauten, um die extremstellen und wendestellen zu berechnen. an den nullstellen bin ich auch schon gescheitert, da ich nicht wusste, ob ich das - vor dem ^t weglassen kann, denn t muss ja negativ sein, somit ist - mal - ja gleich plus?!?!

wäre super wenn ihr mir ansätze für die lösungen geben könntet, wenn nicht sogar ganze:)
danke schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Steckbrief Funktionsscharr: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mo 01.12.2008
Autor: Steffi21

Hallo, das sind doch identische Funktionen?!

[mm] f(x)=x*e^{-t*x^{2}} [/mm] die Ableitung führt hier über die Produktregel

u=x

u'=1

[mm] v=e^{-t*x^{2}} [/mm]

[mm] v'=-2tx*e^{-t*x^{2}} [/mm]

der Faktor -2tx kommt von der Kettenregel, Ableitung des Exponeneten

möchtest du die Nullstellen berechnen, so wird der Faktor [mm] e^{-t*x^{2}} [/mm] niemals zu Null, es bleibt dir also nur der Faktor x, also x= ....

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]