matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStatistik u. Normalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Statistik u. Normalverteilung
Statistik u. Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Statistik u. Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Mi 04.08.2010
Autor: Selageth

Aufgabe
Das Gewicht von Schrauben ist [mm] (\mu,\sigma)-normalverteilt [/mm] mit [mm] \sigma [/mm] = 1g.

Welches mittlere Gewicht haben die Schrauben, wenn außerdem gilt, dass 30% der Schrauben weniger als 5,5g wiegen?
[Hinweis: Wert aus SNV-Tabelle nach der Methode "nächster Nachbar" ablesen]

Hallo zusammen. Ich habe Probleme bei der o.A. Aufgabe auf die korrekte Lösung zu kommen. Da das mittlere Gewicht, also der Erwartungswert gesucht ist, muss man ja [mm]mu[/mm] ermitteln. Zunächst ein mal, was ich gerechnet habe. SNV steht dabei für "Standardnormalverteilung".

Es gilt: 30% der Schrauben wiegen weniger als 5,5g. Also:

    P(X [mm] \le [/mm] 5,5g) = 0,3

=>  [mm] P(\bruch{X-\mu}{\sigma} \le \bruch{5,5g-\mu}{\sigma}) [/mm] = 0,3

=>  P(z [mm] \le [/mm] 5,5 - [mm] \bruch{\mu}{g}) [/mm] = 0,3

=>  [mm] \phi(5,5-\bruch{\mu}{g}) [/mm] = 0,3


Wenn man für Phi in der Standardnormalverteilung 1.0 wählt:

=>  1 * [mm] (5,5-\bruch{\mu}{g}) [/mm] = 0,3

Da 0,3 < 0,5 ist müsste man ja den Wert aus der SNV negativ ablesen. Oder aber vorher die Aussage umformen. Aus "X ist 30% wahrscheinlich" wird also "nicht-X ist 70% wahrscheinlich":

=> 1 * [mm] (\bruch{\mu}{g} [/mm] - 5,5) = 0,7  

Soweit ist alles klar. Hier scheiden sich aber die Geister. Ich persönlich würde jetzt nach mu auflösen:

=> [mm] \mu [/mm] = 0,7 + 5,5 * g

=> [mm] \mu [/mm] = 6,2g


Die Lösung soll aber so aussehen:

=> [mm] \bruch{\mu}{g} [/mm] - 5,5 = 0,52

=> [mm] \mu [/mm] = 6,02g



Mein Hauptproblem ist, dass ich nicht weiß, woher die "0,52" auf der rechten Seite der Gleichung plötzlich auftauchen. Da Phi ja 1,0 sein soll, ist das Z-Quantil gleich 0,8413 laut Tabelle. Muss ich das noch irgendwie mit den 5,5g oder den 70% verrechnen, um auf die 6,02 für mu zu kommen?

        
Bezug
Statistik u. Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Mi 04.08.2010
Autor: Al-Chwarizmi


> Das Gewicht von Schrauben ist [mm](\mu,\sigma)-normalverteilt[/mm]
> mit [mm]\sigma[/mm] = 1g.

  (nur nebenbei: physikalisch exakt ausgedrückt sprechen wir
   von der Masse der Schrauben)  ;-)
  

> Welches mittlere Gewicht haben die Schrauben, wenn
> außerdem gilt, dass 30% der Schrauben weniger als 5,5g
> wiegen?
> [Hinweis: Wert aus SNV-Tabelle nach der Methode "nächster
> Nachbar" ablesen]
>  Hallo zusammen. Ich habe Probleme bei der o.A. Aufgabe auf
> die korrekte Lösung zu kommen. Da das mittlere Gewicht,
> also der Erwartungswert gesucht ist, muss man ja [mm]mu[/mm]
> ermitteln. Zunächst ein mal, was ich gerechnet habe. SNV
> steht dabei für "Standardnormalverteilung".
>  
> Es gilt: 30% der Schrauben wiegen weniger als 5,5g. Also:
>  
> P(X [mm]\le[/mm] 5,5g) = 0,3    [ok]

das "g" für "Gramm" würde ich aus der Rechnung weglassen !
  

> =>  [mm]P(\bruch{X-\mu}{\sigma} \le \bruch{5,5g-\mu}{\sigma})\ =\ 0,3[/mm]

>
>  
> (*) =>  P(z [mm]\le[/mm] 5,5 - [mm]\bruch{\mu}{g})[/mm] = 0,3

>  
> =>  [mm]\Phi(5,5-\mu)[/mm] = 0,3    [ok]

(ich habe jetzt das "g" weggelassen)
[mm] \Phi [/mm] ist die Standardnormalverteilungsfunktion

> Wenn man für Phi in der Standardnormalverteilung 1.0  wählt       [haee] [kopfschuettel]

Neeein !  Hier ist der schlimme Fehler.  [mm] \Phi [/mm] ist nicht ein Faktor,
sondern eine Funktion (für die man die Tabelle braucht)
Du verwechselst hier offenbar [mm] \Phi [/mm] mit der Standardabweichung [mm] \sigma [/mm]  !

Dass in der vorliegenden Aufgabe [mm] \sigma=1 [/mm]  ist, hast du übrigens
etwas weiter oben, beim (*) , schon verwendet !

>  
> =>  1 * [mm](5,5-\bruch{\mu}{g})[/mm] = 0,3   [notok]    

>  
> Da 0,3 < 0,5 ist müsste man ja den Wert aus der SNV
> negativ ablesen. Oder aber vorher die Aussage umformen. Aus
> "X ist 30% wahrscheinlich" wird also "nicht-X ist 70%
> wahrscheinlich"

Da du oben die Vorzeichen nicht verdreht hast, musst du
sie auch jetzt nicht verdrehen.

>  
> => 1 * [mm](\bruch{\mu}{g}[/mm] - 5,5) = 0,7     [notok]
>
> Soweit ist alles klar.     [haee]  

War es offenbar aber überhaupt nicht ...


> Ich persönlich würde jetzt nach mu auflösen:
>  
> => [mm]\mu[/mm] = 0,7 + 5,5 * g
>
> => [mm]\mu[/mm] = 6,2g
>  
>
> Die Lösung soll aber so aussehen:
>  
> => [mm]\bruch{\mu}{g}[/mm] - 5,5 = 0,52
>  
> => [mm]\mu[/mm] = 6,02g
>  
>
>
> Mein Hauptproblem ist, dass ich nicht weiß, woher die
> "0,52" auf der rechten Seite der Gleichung plötzlich
> auftauchen. Da Phi ja 1,0 sein soll, ist das Z-Quantil
> gleich 0,8413 laut Tabelle. Muss ich das noch irgendwie mit
> den 5,5g oder den 70% verrechnen, um auf die 6,02 für mu
> zu kommen?     [notok]

(sorry, aber da veranstaltest du ein Riesenchaos ...)


Wir hatten die Gleichung    [mm]\Phi(\underbrace{5,5-\mu}_z)\ =\ 0,3 [/mm]

Nun löst man zunächst mit Hilfe der Tabelle die Gleichung

      [mm]\Phi(z)\ =\ 0,3 [/mm]

nach z auf. Das Ergebnis ist (mittels Interpolation) :

    $\ z\ =\ [mm] \Phi^{-1}(0.3)\ \approx\ [/mm] -0.524$

Hinweis zur Tabellenbenützung:  

     [mm] $\Phi^{-1}(0.3)\ [/mm] =\ [mm] -\Phi^{-1}(1-0.3)\ [/mm] =\ [mm] -\Phi^{-1}(0.7)$ [/mm]

Damit kommen wir auf

    $\ z\ =\ [mm] 5.5-\mu\ \approx\ [/mm] -0.524$

und also:     [mm] $\mu\ \approx\ [/mm] 5.5+0.524\ =\ 6.024$


LG     Al-Chw.
      


Bezug
                
Bezug
Statistik u. Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Mi 04.08.2010
Autor: Selageth

Jawoll! Danke. Habe mich total verfranst aber jetzt ist alles klar.
Sehr gut erklärt, danke für die ausführliche Antwort. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]