matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStationäre Stellen bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Stationäre Stellen bestimmen
Stationäre Stellen bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationäre Stellen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Sa 08.09.2012
Autor: dudu93

Hallo,

ich habe hier zwei folgende partielle Ableitungen vorliegen, aber komme nicht darauf, wie man davon die stationären Stellen kommen soll.

[mm] f_{x1}(x_1,x_2) [/mm] = [mm] \bruch{1-x_1^2+x_2^2}{(1+x_1^2+x_2^2)^2} [/mm]

[mm] f_{x2}(x_1,x_2) [/mm] = [mm] \bruch{-2x_1x_2}{(1+x_1^2+x_2^2)^2} [/mm]

Die stationären Stellen bekommt man ja, wenn man jeweils nach [mm] x_1 [/mm] und [mm] x_2 [/mm] auflöst. In diesem Fall gibt es aber stets zwei Unbekannte. Kann mir jemand helfen?

LG

        
Bezug
Stationäre Stellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Sa 08.09.2012
Autor: teo

Hallo,

> Hallo,
>  
> ich habe hier zwei folgende partielle Ableitungen
> vorliegen, aber komme nicht darauf, wie man davon die
> stationären Stellen kommen soll.
>  
> [mm]f_{x1}(x_1,x_2)[/mm] = [mm]\bruch{1-x_1^2+x_2^2}{(1+x_1^2+x_2^2)^2}[/mm]
>
> [mm]f_{x2}(x_1,x_2)[/mm] = [mm]\bruch{-2x_1x_2}{(1+x_1^2+x_2^2)^2}[/mm]

[mm] (x_{1},x_{2}) \in \IR^2 [/mm] ist genau dann ein stationärer Punkt, wenn [mm] f_{x1}(x_1,x_2) = f_{x2}(x_1,x_2) = 0[/mm] ist, also genau dann wenn
[mm] 1-x_1^2+x_2^2 = -2x_1x_2 = 0 [/mm]

>
> Die stationären Stellen bekommt man ja, wenn man jeweils
> nach [mm]x_1[/mm] und [mm]x_2[/mm] auflöst. In diesem Fall gibt es aber
> stets zwei Unbekannte. Kann mir jemand helfen?
>  
> LG

Grüße

Bezug
                
Bezug
Stationäre Stellen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Sa 08.09.2012
Autor: dudu93

Danke!

Ich habe jetzt erstmal alles auf eine Seite gebracht:

1 - [mm] x_1^2 [/mm] + [mm] x_2^2 [/mm] + [mm] 2x_1x_2 [/mm] = 0 | -1

- [mm] x_1^2 [/mm] + [mm] x_2^2 [/mm] + [mm] 2x_1x_2 [/mm] = -1

Aber so wirklich komme ich nicht weiter...kann mir jemand helfen?

LG

Bezug
                        
Bezug
Stationäre Stellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Sa 08.09.2012
Autor: Teufel

Hi!

Lös mal beide Gleichungen getrennt. Aus der zweiten [mm] (-2x_1x_2=0) [/mm] erhältst du z.B., dass [mm] x_1 [/mm] oder [mm] x_2 [/mm] 0 sein muss.

Bezug
                                
Bezug
Stationäre Stellen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Sa 08.09.2012
Autor: dudu93

Vielen Dank!

Bezug
                        
Bezug
Stationäre Stellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Sa 08.09.2012
Autor: fred97


> Danke!
>  
> Ich habe jetzt erstmal alles auf eine Seite gebracht:
>  
> 1 - [mm]x_1^2[/mm] + [mm]x_2^2[/mm] + [mm]2x_1x_2[/mm] = 0 | -1


Da steht doch nicht "+", sondern:

1 - [mm]x_1^2[/mm] + [mm]x_2^2[/mm] =- [mm]2x_1x_2[/mm] = 0

FRED

>  
> - [mm]x_1^2[/mm] + [mm]x_2^2[/mm] + [mm]2x_1x_2[/mm] = -1
>  
> Aber so wirklich komme ich nicht weiter...kann mir jemand
> helfen?
>  
> LG


Bezug
        
Bezug
Stationäre Stellen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Sa 08.09.2012
Autor: dudu93

Hallo, ich habe hier nun eine weitere Aufgabe liegen.

Es sind folgende partiellen Ableitungen gegeben:

[mm] f_x(x,y) [/mm] = [mm] 8xe^{x^2+y^2}-2x [/mm]

[mm] f_y(x,y) [/mm] = [mm] 8ye^{x^2+y^2}-2y [/mm]

Wenn ich z.B. die erste nullsetze:

[mm] f_x(x,y) [/mm] = [mm] 8xe^{x^2+y^2}-2x [/mm] = 0

...dann kann [mm] e^{x^2+y^2} [/mm] ja nicht null werden, da ln(0) nicht definiert ist. Aber das x hinter der 8 könnte ja 0 sein. Das wäre meine Überlegung. Könnte mir jemand weiterhelfen?

LG



Bezug
                
Bezug
Stationäre Stellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Sa 08.09.2012
Autor: angela.h.b.


> Hallo, ich habe hier nun eine weitere Aufgabe liegen.
>  
> Es sind folgende partiellen Ableitungen gegeben:
>  
> [mm]f_x(x,y)[/mm] = [mm]8xe^{x^2+y^2}-2x[/mm]
>  
> [mm]f_y(x,y)[/mm] = [mm]8ye^{x^2+y^2}-2y[/mm]
>  
> Wenn ich z.B. die erste nullsetze:
>
> [mm]f_x(x,y)[/mm] = [mm]8xe^{x^2+y^2}-2x[/mm] = 0
>  
> ...dann kann [mm]e^{x^2+y^2}[/mm] ja nicht null werden, da ln(0)
> nicht definiert ist. Aber das x hinter der 8 könnte ja 0
> sein. Das wäre meine Überlegung. Könnte mir jemand
> weiterhelfen?

Hallo,

[mm] $8xe^{x^2+y^2}-2x$ [/mm] = 0

<==>

[mm] 2x(4e^{x^2+y^2}-1)=0 [/mm]

Ein Produkt kann nur =0 sein, wenn einer der beiden Faktoren =0 ist.

Also folgt a) x=0 oder b) [mm] 4e^{x^2+y^2}-1=0. [/mm]

Zweiteres ist gleichbedeutend mit [mm] e^{x^2+y^2}=0.25, [/mm] und nun logarithmiere.

LG Angela



>  
> LG
>  
>  


Bezug
                        
Bezug
Stationäre Stellen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:32 So 09.09.2012
Autor: dudu93

Danke für die Antwort.

Ich habe nun:

[mm] x^2+y^2 [/mm] = ln(0,25)

[mm] x^2 [/mm] = [mm] ln(0,25)-y^2 [/mm]

Dieses [mm] x^2 [/mm] habe ich dann eingesetzt in [mm] f_y: [/mm]

[mm] 8ye^{ln(0,25)-y^2+y^2}-2y [/mm]

= 8 * 0,25 - 2y = 0

2 - 2y = 0 | -2

-2y = -2 |:-2

y = 1

Damit wäre 1 die y-Koordinate des stationären Pkts. Stimmt das so?

LG

Bezug
                                
Bezug
Stationäre Stellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:48 So 09.09.2012
Autor: abakus


> Danke für die Antwort.
>  
> Ich habe nun:
>  
> [mm]x^2+y^2[/mm] = ln(0,25)
>  
> [mm]x^2[/mm] = [mm]ln(0,25)-y^2[/mm]

Hallo,
diese Umstellung ist überflüssig. Es gilt ln(0,25)<0.
[mm] $x^2+y^2$ [/mm] kann aber keine negativen Werte annehmen.
Gruß Abakus

>  
> Dieses [mm]x^2[/mm] habe ich dann eingesetzt in [mm]f_y:[/mm]
>  
> [mm]8ye^{ln(0,25)-y^2+y^2}-2y[/mm]
>  
> = 8 * 0,25 - 2y = 0
>  
> 2 - 2y = 0 | -2
>  
> -2y = -2 |:-2
>  
> y = 1
>  
> Damit wäre 1 die y-Koordinate des stationären Pkts.
> Stimmt das so?
>  
> LG


Bezug
                                        
Bezug
Stationäre Stellen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 So 09.09.2012
Autor: dudu93

Und wie sollte es mann dann sonst machen?

LG

Bezug
                                                
Bezug
Stationäre Stellen bestimmen: Fertig
Status: (Antwort) fertig Status 
Datum: 08:28 So 09.09.2012
Autor: Helbig

Hallo, dudu93

> Und wie sollte es mann dann sonst machen?

Du bist fertig!

Mit abakus' Hinweis hat [mm] $f_x$ [/mm] keine weiteren Nullstellen: Weil [mm] $x^2+y^2 \ge [/mm] 0$ ist, ist [mm] $e^{x^2+y^2} \ge [/mm] 1 > 1/4$.

Die Menge der Nullstellen von [mm] $f_x$ [/mm] ist damit [mm] $\bigl\{(0, y): y\in\IR\bigr\}$. [/mm]

Und die von [mm] $f_y$ [/mm] ist [mm] $\bigl\{(x, 0): x\in\IR\bigr\}$. [/mm]

Wir haben also genau einen stationären Punkt, nämlich $(0,0)$.

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]