matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteStandardskalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Standardskalarprodukt
Standardskalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardskalarprodukt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:14 Sa 01.07.2006
Autor: didi_160

Aufgabe
a) Zeigen Sie, dass jeder Vektor v  [mm] \in \IR^2, [/mm] v  [mm] \not= [/mm] 0 eine Darstellung
v =  [mm] \vektor{r*cos \phi \\ r*sin \phi } [/mm] mit [mm] \varphi \in [/mm] [0,2 [mm] \pi [/mm] ], r > 0 hat.

b) Zeigen Sie, das für [mm] v_j [/mm] = [mm] \vektor{r_j*cos \phi_j \\ r_j*sin \phi _j}, [/mm] j = 1,2 gilt:
[mm] ()/(|v_| |v_2|) [/mm] =cos ( [mm] \phi_1 -\phi_2 [/mm] ).
Dabei ist <.,.> das Standardskalarprodukt und |v| = (<v,v>)^(1/2).
c) Zeigen Sie dass O(2)={ [mm] \pmat{ cos \phi & \pm sin \phi\\ sin \phi & \pm cos \phi } [/mm] | [mm] \phi \in [0,2\pi] [/mm] } gilt.

Hi,
ich übermorgen die Lösung zu folgender Aufgabe vorlegen. Ich kann mit den Vektoren v und [mm] v_i [/mm] nichts anfangen. Wenn dort Ziffern stehen o.k. Aber was sollen dei trigonometrischen Funktionen? Ich weiß bestenfalls dass x = r*cos [mm] \varphi [/mm]  und  y = r*sin [mm] \varphi. [/mm] Mit Aufgabe b) und c) kann ich gar nichts anfangen.

Wer hilft mir ein Stück weiter? Bin für jeden Tipp sehr dankbar.
Gruß didi_160

        
Bezug
Standardskalarprodukt: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 09:24 Sa 01.07.2006
Autor: Karl_Pech

Hallo didi_160,


> a) Zeigen Sie, dass jeder Vektor v  [mm]\in \IR^2,[/mm] v  [mm]\not=[/mm] 0
> eine Darstellung
> v =  [mm]\vektor{r*cos \phi \\ r*sin \phi }[/mm] mit [mm]\varphi \in[/mm]
> [0,2 [mm]\pi[/mm] ], r > 0 hat.


Greifen wir uns also einen beliebigen Vektor [mm]\begin{pmatrix}a\\b\end{pmatrix} \in \mathbb{R}^2 - \{0\}[/mm] heraus.

Die Lösung für die Aufgabe kann man sich dann verdeutlichen, wenn man diesen Vektor in ein kartesisches Koordinatensystem einzeichnet:


[Dateianhang nicht öffentlich]


Und nun gilt doch:


[mm]\sin\varphi = \frac{b}{r}\wedge\cos\varphi = \frac{a}{r}[/mm]



Viele Grüße
Karl





Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Standardskalarprodukt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:48 Sa 01.07.2006
Autor: didi_160

Besten Dank für Deine Antwort.

Was meinst du mit der Schreibweise:
[mm] \in \mathbb{R}^2 [/mm] - [mm] \{0\} [/mm]
[mm] {R}^2 [/mm] ohne das Element {0} ??
______________________________________________
Was ich bei Aufgabe c) machen muß weiß ich wirklich nicht. Hast du noch eine Idee wie ich da weiter komme? Wäre sehr dankbar dafür.

Viele Grüße
didi_160

Bezug
                        
Bezug
Standardskalarprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 03.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]