matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraStandardbasen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Standardbasen
Standardbasen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardbasen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Sa 24.06.2006
Autor: didi_160

Aufgabe
Sei  [mm] \nu \in \IR^3. [/mm] Geben Sie die Matrixdarstellung [mm] A(\nu) [/mm] bezüglich der Standardbasis der durch [mm] \IR^3 \to \IR^3, [/mm] w [mm] \mapsto \nu [/mm] x w gegebenen Abbildung an.
Folgern Sie, dass die Abbildung [mm] \IR^3 \mapsto [/mm] so(3), [mm] \nu \mapsto [/mm] A( [mm] \nu [/mm] ) ein Isomorphismus ist.
Dabei bezeichnet so(3)  [mm] \subset [/mm] M(3 x 3, [mm] \IR [/mm] ) die schiefsymmetrischen Matritzen.
Zeigen Sie ferner, dass für die Abbildung A gilt:
[mm] A(\nu [/mm] x w ) = A( [mm] \nu [/mm] ) A(w) - A(w) A( [mm] \nu [/mm] )=:[A( [mm] \nu [/mm] ), A(w)].

Mit der Aufgabe weiß ich nichts anzufangen.
Hat jemand einen Tipp für mich??

Besten Dank im Voraus.

Gruß
didi_160

        
Bezug
Standardbasen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 So 25.06.2006
Autor: didi_160

Hat denn keiner eine Idee zu dieser Aufgabe ????  

Bezug
        
Bezug
Standardbasen: Tipp
Status: (Antwort) fertig Status 
Datum: 14:48 Mo 26.06.2006
Autor: banachella

Hallo!

Benutz doch mal, dass diese Funktion wie folgt abbildet:
[mm] $\vektor{w_1\\w_2\\w_2}\mapsto \vektor{v_2w_3-v_3w_2\\v_3w_1-v_1w_3\\v_1w_2-v_2w_1}$. [/mm]
Wie stellt man aus solch einer Angabe die Abbildungsmatrix auf?

> Folgern Sie, dass die Abbildung [mm]\IR^3 \mapsto[/mm] so(3), [mm]\nu \mapsto[/mm]
> A( [mm]\nu[/mm] ) ein Isomorphismus ist.

Betrachte [mm] $A(e_1),A(e_2),A(e_3)$ [/mm] und zeige, dass sie linear unabhängig sind. Jetzt musst du nur noch benutzen, dass [mm] $\dim [/mm] so(3)=3$!

>  [mm]A(\nu[/mm] x w ) = A( [mm]\nu[/mm] ) A(w) - A(w) A( [mm]\nu[/mm] )=:[A( [mm]\nu[/mm] ),
> A(w)].

Diese Identität brauchst du eigentlich nur nachzurechnen, sie ergibt sich aus den Eigenschaften des Kreuzproduktes!

Gruß, banachella

Bezug
                
Bezug
Standardbasen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:24 Di 27.06.2006
Autor: didi_160

Hi,

> Wie stellt man aus solch einer Angabe die Abbildungsmatrix
> auf?

Das weiß ich leider nicht. Kannst du mir einen Tipp geben, besser ein Beispiel zum besseren Verständnis??

Gruß didi_160

Bezug
                        
Bezug
Standardbasen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Do 29.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]