Standardabweichung:Beweisführ. < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 20:15 Di 22.03.2011 | Autor: | Laetri |
Aufgabe | Ein großzügiger Chef möchte allen Angestellten eine Gehaltserhöhung spendieren. Er ist sich nicht sicher, ob er einfach allen 2000€ mehr bezahlen oder ob er die Gehälter um 10% erhöhen soll.
b) Was passiert mit der Standardabweichung, wenn alle Angestellten eine Gehaltserhöhung von 10% bekommen? |
Zuerst, ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Diese Frage findet man in diesem Forum so ähnlich schon einmal. Doch dort dreht es sich um eine Gehaltserhöhung von 2000 €.
Wir haben im Unterricht besprochen, dass im Gegensatz zu einer Gehaltserhöhung von 2000€, die Standardabweichung bei einer Gehaltserhöhung von 10% nicht gleich bleibt.
Als Zusatz soll ich dieses anhand der Formel der Standardabweichung beweisen.
$ [mm] S=\wurzel{\bruch{\summe_{i=1}^{k} f_i(x_i-\bar x)^2}{n-1}} [/mm] $
Sowohl [mm] x_i [/mm] als auch [mm] \bar x [/mm] müssten doch jeweils mit 1,1 (wegen 10%) multipliziert werden.
Falls das richtig ist - soweit bin ich gekommen.
Ich habe "rumgerechnet" und falsche Zwischenschritte notiert. Doch mein Endergebnis soll stimmen. So sieht das aus:
[mm] S=\bruch{1,1\summe_{i=1}^{k} f_i(x_i-\bar x)^2}{n-1} [/mm]
Stimmt das?
Mein Problem dabei ist, ich weiß nicht wirklich wie ich die Wurzel und das Quadrat weggekürzt habe. Kann ich das einfach machen, ohne auch die [mm] f_i(1,1x_i-1,1\bar x)[/mm] zu quadrieren und daraus die Wurzel zu ziehen?
Ihr seht, die Verwirrung ist perfekt! Das Problem hat mich völlig aus der Spur geworfen!
Ich wäre euch sehr dankbar, wenn ihr mir einen Denkanstoss geben könntet :)
Liebe Grüße,
Laetri
|
|
|
|
> Ein großzügiger Chef möchte allen Angestellten eine
> Gehaltserhöhung spendieren. Er ist sich nicht sicher, ob
> er einfach allen 2000€ mehr bezahlen oder ob er die
> Gehälter um 10% erhöhen soll.
> b) Was passiert mit der Standardabweichung, wenn alle
> Angestellten eine Gehaltserhöhung von 10% bekommen?
> Zuerst, ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Diese Frage findet man in diesem Forum so ähnlich schon
> einmal. Doch dort dreht es sich um eine Gehaltserhöhung
> von 2000 €.
> Wir haben im Unterricht besprochen, dass im Gegensatz zu
> einer Gehaltserhöhung von 2000€, die Standardabweichung
> bei einer Gehaltserhöhung von 10% nicht gleich bleibt.
> Als Zusatz soll ich dieses anhand der Formel der
> Standardabweichung beweisen.
> [mm]S=\wurzel{\bruch{\summe_{i=1}^{k} f_i(x_i-\bar x)^2}{n-1}}[/mm]
>
> Sowohl [mm]x_i[/mm] als auch [mm]\bar x[/mm] müssten doch jeweils mit 1,1
> (wegen 10%) multipliziert werden.
> Falls das richtig ist - soweit bin ich gekommen.
> Ich habe "rumgerechnet" und falsche Zwischenschritte
> notiert. Doch mein Endergebnis soll stimmen. So sieht das
> aus:
>
> [mm]S=\bruch{1,1\summe_{i=1}^{k} f_i(x_i-\bar x)^2}{n-1}[/mm]
>
> Stimmt das?
> Mein Problem dabei ist, ich weiß nicht wirklich wie ich
> die Wurzel und das Quadrat weggekürzt habe. Kann ich das
> einfach machen, ohne auch die [mm]f_i(1,1x_i-1,1\bar x)[/mm] zu
> quadrieren und daraus die Wurzel zu ziehen?
>
> Ihr seht, die Verwirrung ist perfekt! Das Problem hat mich
> völlig aus der Spur geworfen!
> Ich wäre euch sehr dankbar, wenn ihr mir einen Denkanstoss
> geben könntet :)
>
> Liebe Grüße,
> Laetri
>
Hallo Laetri,
werden alle Einzeldaten mit dem Faktor 1.1
multipliziert, dann natürlich auch der Mittelwert
[mm] \mu [/mm] und die Standardabweichung [mm] \sigma [/mm] !
Die Faktoren [mm] f_i [/mm] erweisen sich beim Nachweis
eher als störend. Nummeriere mit dem Index i
einfach alle einzelnen Lohnbezüger !
LG Al-Chw.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:53 Di 22.03.2011 | Autor: | Laetri |
Hallo Al-Chwarizmi,
Das Mittelwert und Standardabweichung mit 1.1 multipliziert werden sehe ich ein, habe ich eben nochmal nachgerechnet :) Danke!
Nur was meinst du damit:
"Die Faktoren [mm] f_i [/mm] erweisen sich beim Nachweis
eher als störend. Nummeriere mit dem Index i
einfach alle einzelnen Lohnbezüger ! "
Ich gehe von einem Beispiel aus, 9 Angestellte, 2 verdienen 1000€, die restlichen 7 verdienen 3000€.
Grüße,
Laetri
|
|
|
|
|
> was meinst du damit:
>
> "Die Faktoren [mm]f_i[/mm] erweisen sich beim Nachweis
> eher als störend. Nummeriere mit dem Index i
> einfach alle einzelnen Lohnbezüger ! "
>
> Ich gehe von einem Beispiel aus, 9 Angestellte, 2 verdienen
> 1000€, die restlichen 7 verdienen 3000€.
Dann liefe i von 1 bis 9 , x(1)=x(2)=1000, [mm] x_3=x_4= [/mm] ... [mm] =x_9=3000 [/mm] .
Zweck: im Beweis muss man sich nicht mit den [mm] f_i [/mm] herumplagen ...
LG Al-Chw.
|
|
|
|