matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenStammfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Stammfunktionen
Stammfunktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionen: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:31 Di 10.01.2012
Autor: DudiPupan

Aufgabe
Bestimmen Sie die Definitionsbereiche und die Stammfunktion folgender Funktionen:
$(i) x [mm] \mapsto [/mm] 43tan(x)$
$(ii) x [mm] \mapsto 10e^x x^2$ [/mm]
$(iii) x [mm] \mapsto \bruch{x^2+1}{x^4-x^2}$ [/mm]
$(iv) x [mm] \mapsto \bruch{37}{x+xln(x)}$ [/mm]

Also die Definitionsbereiche habe ich soweit:
$(i) [mm] D=\IR \backslash \{ \bruch{k}{2} \pi | k \in \IZ \}$ [/mm]
$(ii) [mm] D=\IC$ [/mm]
$(iii) [mm] D=\IC \backslash \{-1,0,1 \}$ [/mm]
$(iv) [mm] D=\IC\backslash \{x|x\le 0\}$ [/mm]

Stimmt das soweit? :)

Ich hab nur Probleme bei den Stammfunktionen.
Bin für jede Hilfe sehr dankbar!

        
Bezug
Stammfunktionen: Definitionsbereiche
Status: (Antwort) fertig Status 
Datum: 17:01 Di 10.01.2012
Autor: Roadrunner

Hallo DudiPupan!


Grundsätzlich sehen die Definitionsbereiche gut aus. Aber warum gleitest Du plötzlich in die Menge der komplexen Zahlen [mm] $\IC$ [/mm] ab und verbleibst nicht in [mm] $\IR$ [/mm] ?


Gruß vom
Roadrunner

Bezug
                
Bezug
Stammfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Di 10.01.2012
Autor: DudiPupan

Oh, sorry, das war mein Fehler.
Bin gedanklich in der Aufgabe verrutscht.
Sollten eigentlich alle in der Menge der reellen Zahlen liegen ;)

Bezug
        
Bezug
Stammfunktionen: zu Aufgabe (ii)
Status: (Antwort) fertig Status 
Datum: 17:02 Di 10.01.2012
Autor: Roadrunner

Hallo!


>  [mm](ii) x \mapsto 10e^x x^2[/mm]

Hier gilt es, zweimal partielle Integration anzuwenden.


Gruß vom
Roadrunner

Bezug
                
Bezug
Stammfunktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 10.01.2012
Autor: DudiPupan

Also dann hätte ich folgendes:
[mm] $\integral x^2 [/mm] 10 [mm] e^x [/mm] = [mm] \integral [/mm] f* g' = [f * g ] - [mm] \integral [/mm] f' * g = [mm] [x^2 [/mm] 10 [mm] e^x [/mm] ] + [mm] \integral [/mm] -2x* [mm] 10e^x$ [/mm]
[mm] $\integral [/mm] 2x * [mm] 10e^x= \integral [/mm] f * g' = [f * g ] - [mm] \integral [/mm] f' * g = [-20x * [mm] e^x]- \integral -20e^x$ [/mm]
[mm] $\rightarrow \integral x^2 [/mm] 10 [mm] e^x= 10x^2 e^x [/mm] - 20x [mm] e^x [/mm] + 20 [mm] e^x [/mm] = [mm] 10e^x(x^2-2x+2)$ [/mm]
Stimmt das?

Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Di 10.01.2012
Autor: leduart

Hallo
statt nachzufragen, ob was stimmt einfach die Stammfkt differenzieren, das müssen wir auch. sie ist richtig!
es fehlt die Integrationskonstante.
Gruss leduart


Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Di 10.01.2012
Autor: scherzkrapferl


> Also dann hätte ich folgendes:
>  [mm]\integral x^2 10 e^x = \integral f* g' = [f * g ] - \integral f' * g = [x^2 10 e^x ] + \integral -2x* 10e^x[/mm]
>  
> [mm]\integral 2x * 10e^x= \integral f * g' = [f * g ] - \integral f' * g = [-20x * e^x]- \integral -20e^x[/mm]
>  
> [mm]\rightarrow \integral x^2 10 e^x= 10x^2 e^x - 20x e^x + 20 e^x = 10e^x(x^2-2x+2)[/mm]
>  
> Stimmt das?

ja stimmt, hast allerdings deine integrationskonstante vergessen

[mm] \integral x^2 [/mm] 10 [mm] e^x =10e^x(x^2-2x+2)+C [/mm]


Bezug
        
Bezug
Stammfunktionen: zu Aufgabe (i)
Status: (Antwort) fertig Status 
Datum: 17:03 Di 10.01.2012
Autor: Roadrunner

Hallo!


>  [mm](i) x \mapsto 43tan(x)[/mm]

Ersetze [mm] $\tan(x)$ [/mm] durch [mm] $\bruch{\sin(x)}{\cos(x)}$ [/mm] . Nun kannst Du $u \ := \ [mm] \cos(x)$ [/mm] substituieren.


Gruß vom
Roadrunner

Bezug
                
Bezug
Stammfunktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:04 Di 10.01.2012
Autor: DudiPupan

Also die erste Ableitung hätte ich mit der logarithmischen Integration gemacht:
[mm] $\integral{tan(x) dx} [/mm] = [mm] \integral{ \bruch{sin(x)}{cos(x)} dx}$ [/mm]
wähle $u(x):=cos(x)$ und somit: $u'(x)=-sin(x)$, also:
[mm] $\integral{tan(x) dx} [/mm] = [mm] -\integral{ \bruch{u'(x)}{u(x)} dx} [/mm] = -ln|u(x)|= -ln|cos(x)|$
Passt das?

Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Di 10.01.2012
Autor: MathePower

Hallo DudiPupan,

> Also die erste Ableitung hätte ich mit der logarithmischen
> Integration gemacht:
>  [mm]\integral{tan(x) dx} = \integral{ \bruch{sin(x)}{cos(x)} dx}[/mm]
>  
> wähle [mm]u(x):=cos(x)[/mm] und somit: [mm]u'(x)=-sin(x)[/mm], also:
>  [mm]\integral{tan(x) dx} = -\integral{ \bruch{u'(x)}{u(x)} dx} = -ln|u(x)|= -ln|cos(x)|[/mm]
>  
> Passt das?



Ja, das passt. [ok]


Gruss
MathePower







Bezug
        
Bezug
Stammfunktionen: zu Aufgabe (iv)
Status: (Antwort) fertig Status 
Datum: 17:05 Di 10.01.2012
Autor: Roadrunner

Hallo!


> [mm](iv) x \mapsto \bruch{37}{x+xln(x)}[/mm]

Klammere im Nenner $x_$ aus und substituiere anschließend $z \ := \ [mm] 1+\ln(x)$ [/mm] .


Gruß vom
Roadrunner

Bezug
                
Bezug
Stammfunktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:01 Di 10.01.2012
Autor: DudiPupan

Also ich hab zu dieser Aufgabe folgendes, aber ich glaub das stimmt so noch nicht ganz :
[mm] $\integral \bruch{37}{x+xln(x)}dx=\integral 37*\bruch{1}{x}*\bruch{1}{1+ln(x)}dx$ [/mm]
Wähle nun:
$u(x)=1+ln(x)$
somit:
$u'(x)= [mm] \bruch{1}{x}$ [/mm]
Also:
[mm] $\integral 37*\bruch{1}{x}*\bruch{1}{1+ln(x)}dx=\integral [/mm] 37* [mm] \bruch{u(x)'}{u(x)}dx=37*ln|u(x)|+C=37*ln|1+ln(x)|+C$ [/mm]
Aber das stimmt glaube ich nicht ganz, was hab ich falsch gemacht?

Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Di 10.01.2012
Autor: MathePower

Hallo DudiPupan,

> Also ich hab zu dieser Aufgabe folgendes, aber ich glaub
> das stimmt so noch nicht ganz :
>  [mm]\integral \bruch{37}{x+xln(x)}dx=\integral 37*\bruch{1}{x}*\bruch{1}{1+ln(x)}dx[/mm]
>  
> Wähle nun:
>  [mm]u(x)=1+ln(x)[/mm]
>  somit:
>  [mm]u'(x)= \bruch{1}{x}[/mm]
>  Also:
>  [mm]\integral 37*\bruch{1}{x}*\bruch{1}{1+ln(x)}dx=\integral 37* \bruch{u(x)'}{u(x)}dx=37*ln|u(x)|+C=37*ln|1+ln(x)|+C[/mm]
>  
> Aber das stimmt glaube ich nicht ganz, was hab ich falsch
> gemacht?


Du hast nichts falsch gemacht.


Gruss
MathePower

Bezug
                                
Bezug
Stammfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Di 10.01.2012
Autor: DudiPupan

Okay, ja, hab mich beim überprüfen verrechnet ;)
Hat mir vielleicht noch jemand einen Tipp zur iii)?

Vielen Dank :)

Bezug
                                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Di 10.01.2012
Autor: schachuzipus

Hallo,


> Okay, ja, hab mich beim überprüfen verrechnet ;)
>  Hat mir vielleicht noch jemand einen Tipp zur iii)?

Partialbruchzerlegung des Integranden:

[mm] $\frac{x^2+1}{x^4-x^2}=\frac{x^2+1}{x^2(x+1)(x-1)}$ [/mm]

Dann den entsprechenden Partialbruchansatz und du bekommst eine Summe elementarer Integrale ...

>  
> Vielen Dank :)

Gruß

schachuzipus


Bezug
                                                
Bezug
Stammfunktionen: Ergebnis
Status: (Frage) beantwortet Status 
Datum: 18:55 Di 10.01.2012
Autor: DudiPupan

Also kann ich das dann so machen:
[mm] $\bruch{x^2+1}{x^4-x^2}=\bruch{x^2+1}{x^2(x+1)(x-1)}=\bruch{A}{x^2}+\bruch{B}{x+1}+\bruch{C}{x-1}=\bruch{x^3(B+C)+x^2(A-B+C)-A}{x^2(x+1)(x-1)}$ [/mm]
[mm] $\rightarrow [/mm] B+C=0, a-B+C=1, -A=1$
[mm] $\rightarrow [/mm] A=-1, B=-1, C=1$
Somit:
[mm] $\bruch{x^2+1}{x^4-x^2}=\bruch{-1}{x^2}+\bruch{-1}{x+1}+\bruch{1}{x-1}$ [/mm]
Also:
[mm] $\integral \bruch{-1}{x^2}+\bruch{-1}{x+1}+\bruch{1}{x-1}dx [/mm] = [mm] \bruch{1}{x}-ln|x+1|+ln|x-1|+C$ [/mm]
Woher weiß ich hier jedoch wie viele Variablen A,B,C ,.. ich brauche?
habe es nämlich erst falsch gemacht. Hängt das mit den Nullstellen zusammen?

Bezug
                                                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Di 10.01.2012
Autor: MathePower

Hallo DudiPupan,

> Also kann ich das dann so machen:
>  
> [mm]\bruch{x^2+1}{x^4-x^2}=\bruch{x^2+1}{x^2(x+1)(x-1)}=\bruch{A}{x^2}+\bruch{B}{x+1}+\bruch{C}{x-1}=\bruch{x^3(B+C)+x^2(A-B+C)-A}{x^2(x+1)(x-1)}[/mm]


Der Ansatz muss hier doch lauten:

[mm]\bruch{x^2+1}{x^4-x^2}=\bruch{x^2+1}{x^2(x+1)(x-1)}=\red{\bruch{A_{1}}{x}}+\bruch{A_{2}}{x^2}+\bruch{B}{x+1}+\bruch{C}{x-1}[/mm]


>  [mm]\rightarrow B+C=0, a-B+C=1, -A=1[/mm]
>  [mm]\rightarrow A=-1, B=-1, C=1[/mm]
>  
> Somit:
>  
> [mm]\bruch{x^2+1}{x^4-x^2}=\bruch{-1}{x^2}+\bruch{-1}{x+1}+\bruch{1}{x-1}[/mm]
>  Also:
>  [mm]\integral \bruch{-1}{x^2}+\bruch{-1}{x+1}+\bruch{1}{x-1}dx = \bruch{1}{x}-ln|x+1|+ln|x-1|+C[/mm]


[ok]


>  
> Woher weiß ich hier jedoch wie viele Variablen A,B,C ,..
> ich brauche?
>  habe es nämlich erst falsch gemacht. Hängt das mit den
> Nullstellen zusammen?


Das richtet sich nach den Nullstellen im Nenner und deren Vielfachheit.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]