matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Stammfunktionen
Stammfunktionen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mo 25.09.2006
Autor: Kristien

Hi habe hier einige Funktionen, von denen ich die Stammfunktion bilden soll. Wollt fragen, ob ichs richtig gemacht habe. Bin mir vor allem beim Ersten
unsicher.
1.)t(z)= [mm] \bruch{-4}{(z-2)^2} [/mm] Was ist hiervon die Stammfunktion ?
    
2.)    w(c)= [mm] \bruch{1}{\wurzel{c}}-0,25c [/mm]

         [mm] W(C)=-2c^{0,5}-0,125c^2 [/mm]

3.)    [mm] m(z)=\wurzel[3]{z}-\bruch{1}{\wurzel[3]{z}} [/mm]

        [mm] M(Z)=\bruch{3}{4}z^{1\bruch{1}{3}}-3z^\bruch{1}{3} [/mm]

        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Mo 25.09.2006
Autor: miniscout

Hallo!

>  
> 2.)    w(c)= [mm]\bruch{1}{\wurzel{c}}-0,25c[/mm]
>  
> [mm]W(C)=-2c^{0,5}-0,125c^2[/mm]

falsch!

-> [mm]W(C)=2c^{0,5}-0,125c^2[/mm]

  

> 3.)    [mm]m(z)=\wurzel[3]{z}-\bruch{1}{\wurzel[3]{z}}[/mm]
>  
> [mm]M(Z)=\bruch{3}{4}z^{1\bruch{1}{3}}-3z^\bruch{1}{3}[/mm]  

falsch!

-> [mm]M(Z)=\bruch{3}{4}z^{1\bruch{1}{3}}-\bruch{3}{2}z^\bruch{2}{3}[/mm]


Zur 1) wüsste ich nur, dass man es mit Substitution versuchen könnte, aber ob das klappt weiß ich nicht. Wahrscheinlich hast du das auch noch nicht gelernt oder?

Ciao miniscout [clown]

Bezug
        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Mo 25.09.2006
Autor: Herby

Hallo Kristien,
Hallo Miniscout,

bei der 1. braucht man keine Substitution ;-)

Schreibe den Integrand um zu [mm] -4*(x-2)^{-2} [/mm] ; dann wird integriert wie sonst auch:

[mm] \integral{-4*(x-2)^{-2}dx}=-4*\integral{(x-2)^{-2}dx}=-4*[\red{\bruch{1}{(-2+1)}}*(x-2)^{\red{-2+1}}]=-4*[-(x-2)^{-1}]=\bruch{4}{x-2}+\green{C} [/mm]


Liebe Grüße
Herby

Bezug
                
Bezug
Stammfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Mo 25.09.2006
Autor: Kristien

Hi, dankeschön, aber was habe ich bei zwei und drei denn falsch gemacht? Oder stimmts?

Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mo 25.09.2006
Autor: Herby

Salut,

> Hi, dankeschön, aber was habe ich bei zwei und drei denn
> falsch gemacht? Oder stimmts?

also bei 2. hast du ein "minus" verschluckt:  [mm] \bruch{1}{\wurzel{C}}=\bruch{1}{C^{\bruch{1}{2}}}=C^{\red{-}\bruch{1}{2}} [/mm]


und bei 3 hast du im hinteren Teil des Terms den Exponenten nicht erhöht, somit fehlt dir auch der Faktor [mm] \bruch{1}{2}. [/mm]

Miniscout hatte aber schon das richtige Ergebnis hingeschrieben.

Wenn du bei der Rechnung Probleme bekommen solltest, dann schreib mal dein Vorgehen auf.


Liebe Grüße
Herby

Bezug
                                
Bezug
Stammfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Mo 25.09.2006
Autor: Kristien

Sorry, habe gar nicht gesehen, dass die richtige Antwort unter der Bemerkungvon miniscout stand. Komme mit der Rechnung klar. Danke Herby und miniscout. Bye

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]