matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationStammfunktion von Wurzel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Stammfunktion von Wurzel
Stammfunktion von Wurzel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion von Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Mo 08.01.2007
Autor: fruehlingsblume

Aufgabe
[mm] \integral\wurzel{x²-4x+20}dx [/mm]

Hallo!

Könntet ihr mir vielleicht noch mal auf die Sprünge helfen mit diesem Integral?
Unter der Wurzel ist ja ein binomischer Bestandteil zu entdecken, sodass ich t=x-2 substituiert habe. Dann bleibt übrig:
[mm] \integral\wurzel{t²+16}dt [/mm]

Aber wie nun weiter? Oder ist das der falsche Ansatz?
Vielen Dank für Eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion von Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Mo 08.01.2007
Autor: Leopold_Gast

Da gibt  es einen Standardtrick. Entweder du substituierst [mm]t = 4 \sinh{u} \, , \ \mathrm{d}t = 4 \cosh{u} \, \mathrm{d}u[/mm] und verwendest die Funktionalgleichung [mm]1 + \sinh^2{u} = \cosh^2{u}[/mm] oder ganz ähnlich

[mm]t = 2 \left( s - \frac{1}{s} \right) \, , \ s > 0[/mm]

[mm]\mathrm{d}t = 2 \left( 1 + \frac{1}{s^2} \right) \, \mathrm{d}s[/mm]

Hier fehlt also das nachgeschobene [mm]s = \operatorname{e}^u[/mm]. Beim zweiten Vorschlag fällt die Wurzel weg:

[mm]t^2 + 16 = 4 \left( s^2 + \frac{1}{s^2} - 2 \right) + 16 = 4 \left( s^2 + \frac{1}{s^2} + 2 \right) = \left( 2 \left( s + \frac{1}{s} \right) \right)^2 \ \ \Rightarrow \ \ \sqrt{t^2 + 16} = 2 \left( s + \frac{1}{s} \right)[/mm]

Übrig bleibt also die Integration einer Summe von Potenzfunktionen mit negativen Exponenten. Und beachte am Schluß auch:

[mm]2 \left( s^2 - \frac{1}{s^2} \right) = 2 \left( s - \frac{1}{s} \right) \left( s + \frac{1}{s} \right) = \frac{1}{2} \, t \cdot \sqrt{t^2 + 16}[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]