matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion finden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Stammfunktion finden
Stammfunktion finden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion finden: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:36 Mi 03.02.2010
Autor: sunny9

Hallo,

ich versuche grade die ganze Zeit auf eine Umformung zu kommen, um eine Aufgabe lösen zu können, komm aber einfach nicht drauf. Die Lösung habe ich.

Also die Aufgabe ist:

[mm] \int_{0}^{-ln(2)} \bruch{e^{(4x)}}{e^{(2x)}+3}, [/mm] dx

Alles was in Klammern hinter dem e steht soll hoch sein, er macht das bei mir grad nicht, oder ich weiß nicht wie das geht. also e hoch 4x und e hoch 2x.

Vorgegeben ist, dass [mm] t=e^{(2x)}+3 [/mm] sein soll

Lösung der Umformung ist erstmal: [mm] \int_{4}^{3,25} \bruch{1}{2}-\bruch{3}{2t}, [/mm] dx

Ich hab jetzt erstmal t nach x umgestellt: [mm] g(t)=x=-\bruch{ln(3)}{2}+\bruch{ln(t)}{2} [/mm]
dann hab ich diese Funktion abgeleitet: [mm] g'(x)=\bruch{1}{2t} [/mm]
und eingesetzt:

[mm] \int_{4}^{3,25} \bruch{e^{(4(-\bruch{ln(3)}{2}+\bruch{ln(t)}{2}))}}{t}*\bruch{1}{2t}, [/mm] dt

nach weiterem Umformen komme ich [mm] auf:\int_{4}^{3,25} \bruch{-3+t}{2t}*\bruch{1}{2t} [/mm] dt

Wennn ich das noch umschreibe, kann man es besser mit der Lösung [mm] vergleichen:\int_{4}^{3,25} (\bruch{-3}{2t}+\bruch{1}{2})*\bruch{1}{2t} [/mm] dt
Ich habe also [mm] *\bruch{1}{2t} [/mm] irgendwie zu viel, aber ich komm nicht drauf, wo das in der Lösung hin verschwunden ist.Ich wäre sehr dankbar, wenn mir irgendjemand helfen könnte.
Vielen Dank schon mal und herzliche Grüße

        
Bezug
Stammfunktion finden: Exponenten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:39 Mi 03.02.2010
Autor: angela.h.b.


> Alles was in Klammern hinter dem e steht soll hoch sein, er
> macht das bei mir grad nicht, oder ich weiß nicht wie das
> geht. also e hoch 4x und e hoch 2x.

Hallo,

setze alles, was in den Exponenten soll, in geschweifte Klammern. Dann klappt's.

Du kannst Dein Post übrigens bearbeiten, wenn Du den entsprechenden Button klickst.

Gruß v. Angela

Bezug
        
Bezug
Stammfunktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Mi 03.02.2010
Autor: angela.h.b.


> Hallo,
>  
> ich versuche grade die ganze Zeit auf eine Umformung zu
> kommen, um eine Aufgabe lösen zu können, komm aber
> einfach nicht drauf. Die Lösung habe ich.
>  
> Also die Aufgabe ist:
>  
> [mm]\int_{0}^{-ln(2)} \bruch{e^{(4x)}}{e^{(2x)}+3},[/mm] dx
>  
> Alles was in Klammern hinter dem e steht soll hoch sein, er
> macht das bei mir grad nicht, oder ich weiß nicht wie das
> geht. also e hoch 4x und e hoch 2x.
>  
> Vorgegeben ist, dass [mm]t=e^{(2x)}+3[/mm] sein soll
>  
>               Lösung der Umformung ist erstmal: [mm]\int_{4}^{3,25} \bruch{1}{2}-\bruch{3}{2t},[/mm] dt
>  
> Ich hab jetzt erstmal t nach x umgestellt:
> [mm]g(t)=x=-\bruch{ln(3)}{2}+\bruch{ln(t)}{2}[/mm]


Hallo,

und dabei ist was schiefgegangen:

[mm] t=e^{(2x)}+3[/mm] [/mm]

==>

t-3=e^2x

==>

ln(t-3)=2x

==>

[mm] x=\bruch{ln(t-3)}{2} [/mm]

Beachte: es ist [mm] ln(t-3)\not=ln(t)- [/mm] ln(3).

Fürs weitere Vorgehen noch ein Tip: es ist [mm] e^{4x}=(e^{2x})^2. [/mm] Damit ist das Einsetzen im Zähler bequemer, weil man sich das Gewurschtel mit dem ln sparen kann.

Gruß v. Angela




>  dann hab ich diese Funktion abgeleitet:
> [mm]g'(x)=\bruch{1}{2t}[/mm]
>  und eingesetzt:
>  
> [mm]\int_{4}^{3,25} \bruch{e^{(4(-\bruch{ln(3)}{2}+\bruch{ln(t)}{2}))}}{t}*\bruch{1}{2t},[/mm]
> dt
>  
> nach weiterem Umformen komme ich [mm]auf:\int_{4}^{3,25} \bruch{-3+t}{2t}*\bruch{1}{2t}[/mm]
> dt
>  
> Wennn ich das noch umschreibe, kann man es besser mit der
> Lösung [mm]vergleichen:\int_{4}^{3,25} (\bruch{-3}{2t}+\bruch{1}{2})*\bruch{1}{2t}[/mm]
> dt
>  Ich habe also [mm]*\bruch{1}{2t}[/mm] irgendwie zu viel, aber ich
> komm nicht drauf, wo das in der Lösung hin verschwunden
> ist.Ich wäre sehr dankbar, wenn mir irgendjemand helfen
> könnte.
>  Vielen Dank schon mal und herzliche Grüße


Bezug
                
Bezug
Stammfunktion finden: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:05 Mi 03.02.2010
Autor: sunny9

Vielen lieben Dank, endlich verstehe ich wo der Fehler liegt! Ich hab schon ewig dran rumgebastelt und jetzt ists mir endlich klar...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]