matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion ermitteln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Stammfunktion ermitteln
Stammfunktion ermitteln < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion ermitteln: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:26 Mo 14.03.2011
Autor: Rated-R

Aufgabe
Ermitteln Sie eine Stammfunktion.

[mm] f:x\mapsto\bruch{1}{1-e^x} [/mm]

Hallo,

leider weiß ich mal wieder nicht wie ich da vorgehen soll, bzw. seh ich wahrscheinlich den Wald vor lauter bäumen nicht, gibts irgend einen trick

[mm] (1-e^x)^-1 [/mm]

die schreibweise bringt mich auch nicht weiter. Danke für eure Hilfe!

gruß

        
Bezug
Stammfunktion ermitteln: Idee
Status: (Antwort) fertig Status 
Datum: 20:34 Mo 14.03.2011
Autor: kamaleonti

Hallo,
> Ermitteln Sie eine Stammfunktion.
>  
> [mm]f:x\mapsto\bruch{1}{1-e^x}[/mm]
>  Hallo,
>  
> leider weiß ich mal wieder nicht wie ich da vorgehen soll,
> bzw. seh ich wahrscheinlich den Wald vor lauter bäumen
> nicht, gibts irgend einen trick
>  
> [mm](1-e^x)^-1[/mm]
>
> die schreibweise bringt mich auch nicht weiter. Danke für
> eure Hilfe!

Idee:
[mm] \left(\ln(e^x-1)\right)'=\frac{1}{e^x-1}*e^x=1+\frac{1}{e^x-1}=1-\frac{1}{1-e^x} [/mm]
Da musst du nur noch die 1 wieder wegbekommen ;-)

>  
> gruß

Gruß

Bezug
                
Bezug
Stammfunktion ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Mo 14.03.2011
Autor: Rated-R

achso

vllt.

[mm] ln(e^x-1)-x [/mm] ??

aber wie kommt man auf diese Rechnung  mit
[mm] e^x*\bruch {1}{1-e^x}=\bruch{1}{e^x-1} [/mm]

ansonsten Vielen Dank!

Bezug
                        
Bezug
Stammfunktion ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Mo 14.03.2011
Autor: kamaleonti


> achso
>  
> vllt.
>
> [mm]ln(e^x-1)-x[/mm] ??

Nein, aber fast richtig:
[mm] \qquad $x-\ln(e^x-1)$ [/mm]

>  
> aber wie kommt man auf diese Rechnung  mit
> [mm]e^x*\bruch {1}{e^x-1}=\red{1+}\bruch{1}{e^x-1}[/mm]

Da hab ich mir nen Tippfehler geleistet. Hier ist es richtig+ausführlich:
[mm] e^x*\bruch {1}{e^x-1}=\bruch{e^x}{e^x-1}=\bruch{e^x-1+1}{e^x-1}=1+\bruch{1}{e^x-1} [/mm]

>  
> ansonsten Vielen Dank!

Gruß

Bezug
        
Bezug
Stammfunktion ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 Mo 14.03.2011
Autor: Steffi21

Hallo, eventuell hilft dir auch dieser Hinweis

[mm] \bruch{1}{1-e^{x}}=\bruch{1-e^{x}+e^{x}}{1-e^{x}}=1+\bruch{e^{x}}{1-e^{x}}=1-\bruch{e^{x}}{e^{x}-1} [/mm]

Steffi

Bezug
        
Bezug
Stammfunktion ermitteln: oder Substitution
Status: (Antwort) fertig Status 
Datum: 20:45 Mo 14.03.2011
Autor: Loddar

Hallo Rated-R!


Nicht ganz so elegant wie die anderen Vorschläge ... aber es sollte auch mittels Substitution klappen.

Wähle:  $u \ := \ [mm] e^x$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]