matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenStammfunktion d. Logfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Stammfunktion d. Logfunktion
Stammfunktion d. Logfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion d. Logfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Fr 02.01.2009
Autor: Lara102

Aufgabe
Geben Sie für jedes Intervall auf dem die Funktion f definiert ist, eine Stammfunktion an
f(x)= [mm] \bruch{1}{3x-4} [/mm]

hallo,
ich hätte mal ne Frage zu der Aufgabe.
Die Definitionsmenge lautet ja D [mm] \in \IR \{\bruch{4}{3}} [/mm]
Folglich lautet die Intervalle:
x > [mm] \bruch{4}{3} [/mm] und
x < [mm] \bruch{4}{3} [/mm]

Allerdings verstehe ich nun nicht, wieso die Stammfunktion wie folgt lautet:
F(x) = [mm] \bruch{1}{3}* [/mm] ln(3x-4)  für x > [mm] \bruch{4}{3} [/mm]
und nicht
F(x) = ln(3x-4)  
ich weiß, dass dann die Ableitung nicht mehr stimmt, aber wieso dieses [mm] \bruch{1}{3} [/mm] noch da ist, verstehe ich nicht so wirklich.
liebe grüße
lara

        
Bezug
Stammfunktion d. Logfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Fr 02.01.2009
Autor: schachuzipus

Hallo Lara102,

> Geben Sie für jedes Intervall auf dem die Funktion f
> definiert ist, eine Stammfunktion an
>  f(x)= [mm]\bruch{1}{3x-4}[/mm]
>  hallo,
> ich hätte mal ne Frage zu der Aufgabe.
>  Die Definitionsmenge lautet ja [mm] $D=\IR \setminus\left\{\bruch{4}{3}\right\}$ [/mm] [ok]
>  
> Folglich lautet die Intervalle:
> x > [mm]\bruch{4}{3}[/mm] und
>  x < [mm]\bruch{4}{3}[/mm]
>  
> Allerdings verstehe ich nun nicht, wieso die Stammfunktion
> wie folgt lautet:
>  F(x) = [mm]\bruch{1}{3}*[/mm] ln(3x-4)  für x > [mm]\bruch{4}{3}[/mm]

> und nicht
>  F(x) = ln(3x-4)  
> ich weiß, dass dann die Ableitung nicht mehr stimmt, aber
> wieso dieses [mm]\bruch{1}{3}[/mm] noch da ist, verstehe ich nicht
> so wirklich.

Na, du hast ja selber gemerkt, dass die Ableitung von [mm] $\ln(3x-4)$ [/mm] nicht den Integranden ergibt, es ist wegen der inneren Ableitung (Kettenregel) ein Faktor $3$ "zuviel", den gleichst du durch die Multiplikation mit [mm] $\frac{1}{3}$ [/mm] aus.

Formal kannst du - wenn du es schon hattest - das Integral mit der linearen Substitution $u:=3x-4$ lösen

> liebe grüße
> lara

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]