matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenStammfunktion bilden e^(1-0.2x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Stammfunktion bilden e^(1-0.2x
Stammfunktion bilden e^(1-0.2x < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bilden e^(1-0.2x: Frage
Status: (Frage) beantwortet Status 
Datum: 20:34 Di 31.05.2005
Autor: frodoSN

Hallo!

ich bearbeite gerade das Mathe Abi LK 2005 von MeckPomm.

ich komme an einer stelle nicht weiter: man muss die Stammfunktion von

f(X) = x*e^(1-0.2x)

bilden.

es geht denke ich über partielle integration aber irgendwie krieg ichs nicht hin.

wäre super wenn mal jemand erklären köntte wie das geht.

danke!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion bilden e^(1-0.2x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Di 31.05.2005
Autor: Physikus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

hi, dann werde ich mich mal erbarmen(*g*) und die ganze mal kurz vorrechen.
ok als erste die MBpartielle integration:
ausgang ist die ableitung f*g
$(f*g)'=f'*g+f*g'$
$\gdw f'*g=(f*g)'-f*g'$
das ganze wird jetzt integriert
$\gdw \integral{f'*g dx}=\integral{(f*g)' dx}-\integral{f*g' dx}$
wobei $ \integral{(f*g)' dx}$  zu $ f*g$ wird
also haben wir als formel für die partielle integration
$\gdw \integral{f'*g dx}=(f*g)-\integral{f*g' dx}$

nun also zu deiner funktion $h=x*e^{1-0.2x}$
jetzt muss man noch $f'$ (achtung man wählt nimmt hier an dass die $h=f'*g$ ist) und $g$ geschickt wählen. wie wir $f'$ wählen ist egal. da wir sowohl $x$ als auch $e^{1-0.2x}$ leicht zu integrieren ist. bei g ist es nicht egal da wir das integral $\integral{f*g' dx}$ ja noch bilden müssen und wenn wir $g=e^{1-0.2x}$ wählen steht da dann immer noch ein integral das nicht schöner aussieht als das vorherige. also wählen wir $f'=e^{1-0.2x}$ und $g=x$.
so folgt dann:
$f=-5*e^{1-0.2x}$
$g'=1$
also für
$\integral{x*e^{1-0.2x} dx}=-5x*e^{1-0.2x}-\integral{e^{1-0.2x dx}+c1}$
$\gdw \integral{x*e^{1-0.2x} dx}=-5x*e^{1-0.2x}-5*{e^{1-0.2x}+c2}$
(die c's sind integrationskonstanten)
$\gdw \integral{x*e^{1-0.2x} dx}=-5*(e^{1-0.2x}*(x+1)+c2}$




Bezug
        
Bezug
Stammfunktion bilden e^(1-0.2x: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Di 31.05.2005
Autor: Karl_Pech

Hallo frodo,


> ich komme an einer stelle nicht weiter: man muss die
> Stammfunktion von
>
> [mm] $f\left( x \right) [/mm] = [mm] x*e^{1-0.2x}$ [/mm]
>  
> bilden.
>  
> es geht denke ich über partielle integration aber irgendwie
> krieg ichs nicht hin.


Bilde [mm] $f'(x)\!$: [/mm]


[m]\left[ {xe^{1 - 0.2x} } \right]'\mathop = \limits^{\begin{subarray}{l} {\text{Produktregel}}{\text{, danach}} \\ {\text{Kettenregel}} \end{subarray}} e^{1 - 0.2x} + x\underbrace {\left( { - 0.2} \right)e^{1 - 0.2x} }_{{\text{nach der Kettenregel}}} = e^{1 - 0.2x} - 0.2*xe^{1 - 0.2x}[/m]


Jetzt gilt nach dem Hauptsatz der Integralrechnung:


[m]\int {\left( {e^{1 - 0.2x} - 0.2*xe^{1 - 0.2x} } \right)} dx = xe^{1 - 0.2x}[/m]


Umformen ergibt:


[m]\begin{gathered} \int {\left( {e^{1 - 0.2x} - 0.2*xe^{1 - 0.2x} } \right)} dx = \int {e^{1 - 0.2x} } dx - 0.2\int {xe^{1 - 0.2x} } dx = xe^{1 - 0.2x} \hfill \\ \Leftrightarrow \int {xe^{1 - 0.2x} } dx = \frac{{xe^{1 - 0.2x} - \int {e^{1 - 0.2x} } dx}} {{ - 0.2}} \hfill \\ \end{gathered}[/m]


Jetzt haben wir unser Problem auf die Berechnung von [m]\textstyle\int{e^{1 - 0.2x}\operatorname{d}\!x}[/m] reduziert. Leite nun zuerst ab:


[m]\left[ {e^{1 - 0.2x} } \right]'\mathop = \limits^{{\text{Kettenregel}}} - 0.2e^{1 - 0.2x}[/m]


und integriere dann:


[m]\begin{gathered} \int {\left( { - 0.2e^{1 - 0.2x} } \right)} dx = e^{1 - 0.2x} \Leftrightarrow \int {e^{1 - 0.2x} } dx = - 5e^{1 - 0.2x} \Rightarrow \int {xe^{1 - 0.2x} } dx = \frac{{xe^{1 - 0.2x} + 5e^{1 - 0.2x} }} {{ - 0.2}} \hfill \\ = - 5\left( {x + 5} \right)e^{1 - 0.2x} \hfill \\ \end{gathered}[/m]


Hier wurde ausgenutzt, daß [m]\left[ e^x \right]' = e^x[/m] gilt.



Viele Grüße
Karl



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]