matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion bilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Stammfunktion bilden
Stammfunktion bilden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Mi 20.06.2012
Autor: v6bastian

Aufgabe
[mm] \integral_{}^{}{f(5^{x}+(sinx)^{-2}) dx} [/mm]

Hallo,

ich brauche Hilfe um hier die Stammfunktion zu bilden

Bei dem [mm] 5^{x} [/mm] habe ich schon gesehen, dass daraus [mm] e^{x ln 5} [/mm] wird und die Stammfunktion anschließend zu [mm] \bruch{e^{x ln 5}}{ln 5} [/mm] gebildet wird.

Die zweite Hälfte wird nachher zu -cot(x), aber wie passiert das? Kann mir das jemand freundlicherweise step-by-step erläutern?

Gruß und Danke
Bastian

        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Mi 20.06.2012
Autor: reverend

Hallo Bastian,

kleiner Tippfehler?

> [mm]\integral_{}^{}{f(5^{x}+(sinx)^{-2}) dx}[/mm]

Das f ist hier hoffentlich überflüssig, ansonsten wäre über die Aufgabe auch nicht viel zu sagen.

>  Hallo,
>  
> ich brauche Hilfe um hier die Stammfunktion zu bilden
>  
> Bei dem [mm]5^{x}[/mm] habe ich schon gesehen, dass daraus [mm]e^{x ln 5}[/mm]
> wird und die Stammfunktion anschließend zu [mm]\bruch{e^{x ln 5}}{ln 5}[/mm]
> gebildet wird.

Ja, genau. Du zerlegst das Integral einfach in zwei. Dies ist der erste Teil. [ok]

> Die zweite Hälfte wird nachher zu -cot(x), aber wie
> passiert das? Kann mir das jemand freundlicherweise
> step-by-step erläutern?

Das ist eins der Integrale, an dem man sich ziemlich die Zähne ausbeißen kann, obwohl es eigentlich ganz einfach ist. Es empfiehlt sich, solche Stammfunktionen auswendig zu lernen, sonst kann man in Klausuren ziemlich aufgeschmissen sein, weil man den folgenden "Trick" dann eben gerade nicht findet.

[mm] \integral{\bruch{1}{\sin^2{x}}\ dx}=\integral{\bruch{\sin^2{x}+\cos^2{x}}{\sin^2{x}}\ dx}=\integral{1+\bruch{\cos{x}}{\sin^2{x}}*\cos{x}\ dx}=\integral{1\ dx}+\integral{\bruch{\cos{x}}{\sin^2{x}}*\cos{x}\ dx} [/mm]

Das rechte Integral kann man ziemlich einfach per partieller Integration lösen, wenn man im linken Bruch die Struktur [mm] \bruch{f'(x)}{(f(x))^2} [/mm] erkennt und damit fast schon die Ableitung von [mm] \bruch{1}{f(x)}. [/mm]

Grüße
reverend



Bezug
                
Bezug
Stammfunktion bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Mi 20.06.2012
Autor: v6bastian

Hallo reverend,

danke für deine Erläuterung. Ich gehöre offensichtlich zu den Personen die selbst mit Anleitung das ganze nicht nachvollziehen können :( Werde deinen Ratschlag befolgen und die Sachen auswendig lernen.

Das f in dem Integral stammt aus Eingabehilfe. Hab da nur das x mit der Funktion ersetz. Sorry.

Danke & Gruß
Bastian

Bezug
                        
Bezug
Stammfunktion bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:13 Mi 20.06.2012
Autor: reverend

Hallo nochmal,

> danke für deine Erläuterung. Ich gehöre offensichtlich
> zu den Personen die selbst mit Anleitung das ganze nicht
> nachvollziehen können :( Werde deinen Ratschlag befolgen
> und die Sachen auswendig lernen.

Hattet Ihr denn partielle Integration? Damit ist es doch dann leicht machbar. Vorher habe ich doch nur den "trigonometrischen Pythagoras" angewandt und damit die 1 im Zähler ersetzt, ab da ist es ein bisschen Bruchrechnung und "Umschreiben".

Ich konnte damals übrigens nicht mehr auswendig als die Ableitung von [mm] \tan{x}. [/mm] Das reichte für solche Fälle eigentlich aus, damit irgendwo ein Glöckchen klingelte, wenn irgendwo [mm] \bruch{1}{\sin^2{x}} [/mm] oder [mm] \bruch{1}{\cos^2{x}} [/mm] zu integrieren war.

> Das f in dem Integral stammt aus Eingabehilfe. Hab da nur
> das x mit der Funktion ersetz. Sorry.

Schon gut. ;-)

Dann erstmal viel Erfolg mit den Integrationen. Das gilt nicht umsonst als hohe Kunst; oft muss man erst einmal auf irgendeinen Kniff kommen, z.B. eine geschickte Substitution.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]