matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion bilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Stammfunktion bilden
Stammfunktion bilden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Mi 20.02.2008
Autor: TopHat

Aufgabe
Wie lautet die Stammfunktion von [mm] \bruch{x^{2}}{1-x^{2}} [/mm]

Hi erstmal:

also ich habe es ersteinmal mit Substitution [mm] z=x^{2} [/mm] versucht, aber dann muss man ja den Term

[mm] \bruch{z}{1-z} [/mm] nach dz ja noch duch 2x teilen, und das plötzlich auftauchende x gefällt mir dort gar nicht. DEnke nicht, dass ich dort die LÖsung finde.

Deshalb probiere ich das mit der partiellen Integration (Produktregel)

[mm] \integral_{}^{}{\bruch{x^{2}}{1-x^{2}} dx} [/mm]
[mm] \integral_{}^{}{x*\bruch{x}{1-x^{2}} dx} [/mm] und hier denke ich dass ich für den 2. Faktor den ln - Spezialfall verwenden kann, also erweitere ich mit -2
[mm] \integral_{}^{}{x*\bruch{-2*x}{-2*(1-x^{2})} dx} [/mm] und ziehe die Divisor Minus 2 aus dem Integral
[mm] \bruch{1}{-2}\integral_{}^{}{x*\bruch{-2*x}{(1-x^{2})} dx} [/mm]

und nun gehts weiter mit
[x*ln(-x²+1)] * [mm] \integral_{}^{}{ln(-x²+1)} [/mm]

tja, und nun könnte ich ja das letztere Integral auch schreiben als
[mm] \integral_{}^{}{ln(x+1)*ln(x-1)} [/mm] , aber ob mir das was nützt bezweifle ich.

Ich bedanke mich schonmal, wenn sich überhaupt jemand die MÜhe macht meiner Ausführung zu folgen und mir weiterhelfen würde. Schönen Abend noch.

        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Mi 20.02.2008
Autor: MacChevap

Hi,

ich versuch's mal.

[mm] \integral_{}^{}{\bruch{x²}{1-x²} dx} [/mm]

[mm] \integral_{}^{}{\bruch{ x²-1 + 1 }{-x²+1} dx} [/mm] <-der Trick wird oft verwendet (+1-1)

[mm] =>\integral_{}^{}{\bruch{-1*(x²-1)}{x²-1} dx} [/mm] + [mm] \integral_{}^{}{\bruch{1}{1-x²} dx} [/mm] <-Hier habe ich aus dem Nenner (-1) ausgeklammert und das Integral in 2 zerlegt.

[mm] \integral_{}^{}{-1 dx} [/mm] + [mm] \integral_{}^{}{\bruch{1}{1-x²} dx} [/mm]

F(x)= -x + artanhx +C für |x|<1

statt dem artanhx, arcoth |x|>1

Scheint sogar zu stimmen ;)

Hier der Test
F(x)= -x + artanhx +C für |x|<1

F'(x)= -1 + [mm] \bruch{1}{1-x²} [/mm] = [mm] \bruch{-1+x²+1}{1-x²}=\bruch{x²}{1-x²} [/mm]
lieben Gruß





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]