matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Stammfunktion bestimmen
Stammfunktion bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Do 28.05.2015
Autor: Pokermocker

Hallo,

ich brauche für eine Übungsaufgabe die Stammfunktion der Funktion:

[mm] f(x)=\bruch{1}{\wurzel{(2*\pi)}}\*\bruch{1}{(1+x^{2}/2)} [/mm]

Nun habe ich den ersten Faktor vor die Wurzel gezogen und den zweiten Faktor umgeschrieben zu : [mm] \bruch{2}{(2+x^{2})}. [/mm]

Ich weiß, dass die Stammfunktion von : [mm] \bruch{1}{(1+x^{2})} [/mm]
der Arkustangens ist.

Mein Problem ist, dass ich nicht erkenne, wie ich dieses Wissen nutzen kann um die Stammfunktion von [mm] \bruch{2}{(2+x^{2})} [/mm] zu berechnen. Vermutlich ist die Lösung super trivial und ich komme einfach nicht drauf... Aber stehe da gerade echt auf dem Schlauch. :(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Do 28.05.2015
Autor: Gonozal_IX

Hiho,

Tipp: [mm] $\bruch{x^2}{2} [/mm] = [mm] \left(\bruch{x}{\sqrt{2}}\right)^2$ [/mm]

substituiere also $y = [mm] \bruch{x}{\sqrt{2}}$ [/mm]

Gruß,
Gono

Bezug
                
Bezug
Stammfunktion bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 Do 28.05.2015
Autor: Pokermocker

Vielen Dank!!

Komme dann mit meinem Integral auf:

[mm] \integral_{-\infty}^{\infty}{\bruch{1}{1+y}*\wurzel{2}dy}=\limes_{y\rightarrow\infty}Arctan(y)*\wurzel{2}-\limes_{y\rightarrow-\infty}Arctan(y)*\wurzel{2}=(\bruch{\pi}{2}-\bruch{-\pi}{2})*\wurzel{2}=\pi*\wurzel{2} [/mm]

und somit für:

[mm] \integral_{-\infty}^{\infty}{\bruch{1}{\wurzel{2*\pi}}*\bruch{1}{1+(x^{2}/2)}dx}=\bruch{\pi*\wurzel{2}}{\wurzel{2*\pi}}=\wurzel{\pi} [/mm]

Damit kann ich gut weiterarbeiten! :)

Bezug
        
Bezug
Stammfunktion bestimmen: Sprachgebrauch: EINE Stfkt...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Do 28.05.2015
Autor: Marcel

Hallo,

> Hallo,
>  
> ich brauche für eine Übungsaufgabe die Stammfunktion der Funktion:

Vorsicht: Stammfunktionen sind nicht eindeutig. Daher sollte man nie von
DER Stammfunktion sprechen, sondern von EINER.

> [mm]f(x)=\bruch{1}{\wurzel{(2*\pi)}}\*\bruch{1}{(1+x^{2}/2)}[/mm]
>  
> Nun habe ich den ersten Faktor vor die Wurzel gezogen und
> den zweiten Faktor umgeschrieben zu :
> [mm]\bruch{2}{(2+x^{2})}.[/mm]
>  
> Ich weiß, dass die Stammfunktion von :

S.o.!

> [mm]\bruch{1}{(1+x^{2})}[/mm]
> der Arkustangens ist.
>  
> Mein Problem ist, dass ich nicht erkenne, wie ich dieses
> Wissen nutzen kann um  die Stammfunktion von

S.o.!

> [mm]\bruch{2}{(2+x^{2})}[/mm] zu berechnen. Vermutlich ist die
> Lösung super trivial und ich komme einfach nicht drauf...
> Aber stehe da gerade echt auf dem Schlauch. :(

Bitte in Zukunft darauf achten (hier ist das nicht besonders schlimm, aber
später wirst Du damit Dich und andere verwirren, wenn Dir das nicht ganz
klar ist).

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]