matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungStammfunktion ableiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Stammfunktion ableiten
Stammfunktion ableiten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Do 20.04.2006
Autor: Fred-erik

Aufgabe
1. Zeige: Fc : x -->  [mm] \bruch{1}{2}*(2x+1)*(ln(2x+1)-1) [/mm] + c
ist Stammfunktionsschar der Funktion f.

Ergebnis: f:x --> ln (2x+1)

2: Zeige: F:x --> (x-1)*(ln(x-1)-1) + (x+1)*(ln(x+1)-1)
ist eine Stammfunktion der Funktion f.

Ergebnis: f:x --> ln(x-1) + ln(x+1)

Hallo,

mich würde mal interessieren, wie man diese Funktionen denn richtig ableitet.

Ich dachte mir,  um zu zeigen das eine Funktion eine Stammfunktion ist, muss ich ja erstmal eine Ableitung bilden. Nun ärgert mich dieser Logarithmus etwas, da in der Ausgangsgleichung bereits schon ein ln steht und die die typische ln-Ableitung sieht ja wie folgt aus: ln1 = [mm] \bruch{1}{x}. [/mm]

zu 1.) Die einzige Idee die ich hier hatte war es die ersten beiden Klammern zusammenzufassen, so das da dann steht (1x + [mm] \bruch{1}{2}. [/mm]

Diesen vorderen Teil abgeleitet, und der hintere Teil abgeleitet ergibt bei mir: 1 * [mm] \bruch{2}{2x+1}. [/mm] Das kann ja so auch nicht ganz stimmen, da ja das ln noch da bleiben muss.

Vielleicht muss ich das ja garnicht ableiten sondern nur irgendwie zusammenfassen?

Zusätzlich soll das ganze noch eine Schar sein ?!?


zu 2.) Hier isses ähnlich...Nachdem ich die beiden äußeren Klammern "reingeholt" habe und danach abgeleitet habe steht bei mir:

f:x --> ln(x-1)² + ln (x+1)² - 2x.

Das kann ja so auch nicht stimmen...

Wäre dankbar für ein paar kleine Hilfestellungen.


Viele Grüße, Frederik.

PS: Ich habe diese Frage nicht woanders geposted.




        
Bezug
Stammfunktion ableiten: Produktregel
Status: (Antwort) fertig Status 
Datum: 21:00 Do 20.04.2006
Autor: Loddar

Hallo Frederik!


Du musst beim Ableiten dieser beiden Funktionen jeweils mit der MBProduktregel [mm] $\left( \ u*v \ \right)' [/mm] \ = \ u'*v+u*v'$ arbeiten.


Beispiel a.)

$u \ = \ [mm] \bruch{1}{2}*(2x+1)$ $\Rightarrow$ [/mm]   $u' \ = \ [mm] \bruch{1}{2}*2 [/mm] \ = \ 1$

$v \ = \ [mm] \ln(2x+1)-1$ $\Rightarrow$ [/mm]   $v' \ = \ [mm] \bruch{1}{2x+1}*2 [/mm] -0 \ = \ [mm] \bruch{2}{2x+1}$ [/mm]


Und nun in obige Formel einsetzen (Klammern setzen nicht vergessen)!


Gruß
Loddar


Bezug
                
Bezug
Stammfunktion ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Do 20.04.2006
Autor: Fred-erik

Ja ja...manchmal sieht man den Wald vor lauter Bäumen nicht.

Ich dank dir.
Frederik.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]