matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion Logarrithmusfunk
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Stammfunktion Logarrithmusfunk
Stammfunktion Logarrithmusfunk < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion Logarrithmusfunk: Frage
Status: (Frage) beantwortet Status 
Datum: 18:50 Sa 26.02.2005
Autor: DieFetteElke

Hallöchen zusammen,
ich komme bei einer Aufleitung nicht weiter, vielleicht kann mir ja hier jemand helfen.
Die Funktion ist f(x)= [mm] x+ln(x^2) [/mm]
kann mir jemand die Lösung sagen und den Weg erklären? Das würde mir sehr weiterhelfen!
LG DieFetteElke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion Logarrithmusfunk: Tipp: Umformung
Status: (Antwort) fertig Status 
Datum: 19:10 Sa 26.02.2005
Autor: Loddar

Hallo Alfi!

[willkommenmr] !!

Bitte lies' Dir doch mal unsere Forenregeln durch, insbesondere den Punkt mit den eigenen Lösungsansätzen ...



>  Die Funktion ist f(x)= [mm]x+ln(x^2)[/mm]

Kennst Du denn die Stammfunktion zur ln-Funktion?

Deine Funktion kann man nämlich nach einem MBLogarithmusgesetz umformen: [mm] $\log_b \left( a^m \right) [/mm] \ = \ m * [mm] \log_b [/mm] (a)$

[mm] $\Rightarrow$ [/mm]   $f(x) \ = \ x + [mm] 2*\ln(x)$ [/mm]


Kannst Du nun die Stammfunktion bilden?

Gruß
Loddar


Bezug
                
Bezug
Stammfunktion Logarrithmusfunk: Idee
Status: (Frage) beantwortet Status 
Datum: 19:27 Sa 26.02.2005
Autor: DieFetteElke

Also ist die Stammfunktion F(x)= [mm] 1/2*x^2+2*(x*ln(x)-x) [/mm] ?
Aber wie würde es denn z.B. mit f(x)=ln(3x) aussehen,was ist da die Stammfunktion?
Danke für die Hilfe!
LG

Bezug
                        
Bezug
Stammfunktion Logarrithmusfunk: Anderes Logarithmusgesetz
Status: (Antwort) fertig Status 
Datum: 19:36 Sa 26.02.2005
Autor: Loddar

Hallo Alfi!

> Also ist die Stammfunktion F(x)= [mm]1/2*x^2+2*(x*ln(x)-x)[/mm] ?

[daumenhoch] Stimmt ...



> Aber wie würde es denn z.B. mit f(x)=ln(3x) aussehen,was
> ist da die Stammfunktion?

Da wenden wir ein anderes MBLogarithmusgesetz an: [mm] $\log_b [/mm] (x * y) \ = \ [mm] \log_b(x) [/mm] + [mm] \log_b(y)$ [/mm]

Also für Deine Aufgabe: $f(x) \ = \ [mm] \ln(3x) [/mm] \ = \ [mm] \ln(3) [/mm] + [mm] \ln(x)$ [/mm]


Alternativ könntest Du auch über Substitution mit $z := 3x$ zum Ziel kommen.

Versuch' das doch mal ...


Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]