matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion/Integralfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Stammfunktion/Integralfunktion
Stammfunktion/Integralfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion/Integralfunktion: Abgrenzung
Status: (Frage) beantwortet Status 
Datum: 19:34 Mo 20.11.2017
Autor: Paul88


Hallo zusammen,

kann man, unabhängig von der unterschiedlichen Definition der Funktionen und eine Unterscheidung über die Definitionen, anschaulich sagen, dass Stammfunktionen die Menge aller Integralfunktionen zu stetigen Funktionen f sind, oder habe ich dann irgendetwas nicht berücksichtigt?

Gruß
Paul88

        
Bezug
Stammfunktion/Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Mo 20.11.2017
Autor: Diophant

Hallo,

> kann man, unabhängig von der unterschiedlichen Definition
> der Funktionen und eine Unterscheidung über die
> Definitionen, anschaulich sagen, dass Stammfunktionen die
> Menge aller Integralfunktionen zu stetigen Funktionen f
> sind, oder habe ich dann irgendetwas nicht
> berücksichtigt?

solange die Integralfunktionen die  übliche Form

[mm]J_1(x)= \int_{a}^{x}{f(t) dt}=F(x)-F(a)[/mm]

haben, ist deine Aussage offensichtlich korrekt. Ich sehe aber nicht so ganz, was der Erkenntnisgewinn dabei ist.

Nimm aber mal als Gegenbeispiel

[mm]J_2(x)= \int_{x}^{a}{f(t) dt}=F(a)-F(x)[/mm].

Hier ist die Integralfunktion keine Stammfunktion von f(x).


Gruß, Diophant
 

Bezug
        
Bezug
Stammfunktion/Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Mo 20.11.2017
Autor: Gonozal_IX

Hiho,

> kann man, unabhängig von der unterschiedlichen Definition
> der Funktionen und eine Unterscheidung über die
> Definitionen, anschaulich sagen, dass Stammfunktionen die
> Menge aller Integralfunktionen zu stetigen Funktionen f
> sind

Das kommt darauf an, wie ihr Stammfunktion definiert habt.

> oder habe ich dann irgendetwas nicht berücksichtigt?

Ja, geht man beispielsweise nach der []Stammfunktionsdefinition bei Wikipedia, dann ist eine Stammfunktion zu f eine differenzierbare Funktion F, so dass $F'=f$ gilt. Das ist meines Wissens auch die gängige Definition.

Nun ist $F(x) = [mm] \begin{cases} x^2\sin\left(\frac{1}{x}\right), & x\not= 0 \\ 0, & x=0 \end{cases}$ [/mm] offensichtlich eine Stammfunktion zu $f(x) = [mm] \begin{cases} 2x\sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & x\not=0 \\ 0 & x=0 \end{cases}$, [/mm] f ist nicht stetig und F lässt sich nicht als "Integralfunktionen zu [einer] stetigen Funktionen f" darstellen.


Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]