matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Cos(x)*e^x
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 06.04.2010
Autor: PeterSteiner

Hi komme hier nicht weiter :-(

Folgende funktion ist gegeben :

[mm] f(x)=e^x*cos(x) [/mm]

Ich soll eine stammfunktion finden   dazu sage ich :

u=sin(x)         [mm] v=e^x [/mm]
u´=cos(x)      [mm] v´=e^x [/mm]

[mm] \integral_{a}^{b}{e^x*cos(x)dx}=sin(x)*e^x-\integral_{a}^{b}{sin(x)*e^xdx} [/mm]

jetzt muss ich wieder u und v wählen also:
u=-cos(x)     [mm] v=e^x [/mm]
u´=sin(x)     [mm] v´=e^x [/mm]

[mm] \integral_{a}^{b}{e^x*cos(x)dx}=sin(x)*e^x-(sin(x)*e^x+\integral_{a}^{b}{cos(x)*e^x dx} [/mm]

Also ich könnte jetzt das [mm] \integral_{a}^{b}{cos(x)*e^x dx} [/mm] auf die andere Seite bringen dann würde 0=0 herraus kommen ich bekomme immer 0=0 herraus egal wie ich mein u und v wähle was mache ich falsch ???

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Di 06.04.2010
Autor: Tyskie84

Hallo,

ich wähle:

[mm] u=e^{x} [/mm]
[mm] u'=e^{x} [/mm]
[mm] \\v=sin(x) [/mm]
[mm] \\v'=cos(x) [/mm]

und erhalte, [mm] \integral_{}^{}{e^{x}*cos(x)dx}=e^{x}*sin(x)-\integral_{}^{}{sin(x)*e^{x}dx} [/mm]

weiter wähle ich:

[mm] u=e^{x} [/mm]
[mm] u'=e^{x} [/mm]
[mm] \\v=-cos(x) [/mm]
[mm] \\v'=sin(x) [/mm]

und erhalte, [mm] \integral_{}^{}{e^{x}*cos(x)dx}=e^{x}*sin(x)-\left[-cos(x)e^{x}-\integral_{}^{}{-cos(x)*e^{x}dx}\right]=e^{x}*sin(x)+cos(x)*e^{x}-\integral_{}^{}{cos(x)*e^{x}dx} [/mm]

Der Rest sollte nun klar sein.

Du hast einfach eine Klammer vergessen ;-)

[hut] Gruß

Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Di 06.04.2010
Autor: PeterSteiner

wo habe ich bei meiner Rechnung eine Klammer vergessen wie ich sehe hast du auch und und v anders gewählt.
Ich bin so vorgegangen:

[mm] U*v=u*v-\integral_{a}^{b}{u*V dx} [/mm]

du bist so vorgenagen:
[mm] u*V=u*v\integral_{a}^{b}{U*v dx} [/mm]

U=soll die ableitung seind sowie V die Striche sind leider nicht dargestellt worden.

Bezug
                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Di 06.04.2010
Autor: Sierra

Hallo,

Tyskie hat es dir korrekt vorgerechnet.
Du hast vergessen eine Klammer zu zumachen, woraus aber meiner Meinung nach nicht der Fehler resultiert. Dir ist ein Vorzeichenfehler unterlaufen bzw. hast du auch die Produktregel nicht korrekt angewandt:

Bis zum Schritt
[mm] \integral_{a}^{b}{e^{x}*cos(x) dx} [/mm] = [mm] sin(x)*e^{x} [/mm] - [mm] \integral_{a}^{b}{e^{x}*sin(x) dx} [/mm]
sind wir uns ja noch einig.

Nun folgt aber

[mm] \integral_{a}^{b}{e^{x}*cos(x) dx} [/mm] = [mm] sin(x)*e^{x} [/mm] - [mm] \integral_{a}^{b}{e^{x}*sin(x) dx} [/mm] = [mm] sin(x)*e^{x} [/mm] - ( -cos(x) [mm] *e^{x} [/mm] - [mm] \integral_{a}^{b}{-cos(x) *e^{x} dx} [/mm] )

Hätte gerne die entscheidenden stellen Rot markiert, in der Vorschau entsteht dann aber totaler Mist :S ich hoffe du erkennst es auch so

Hoffe das hilft dir weiter

Gruß Sierra

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]