matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Mo 20.07.2009
Autor: Dinker

Guten Nachmittag

Ich habe ein etwas seltsames Problem

Ich habe die FUnktion f(x) = ln x

Nun sollte ich die Stammfunktion bestimmen. Jedoch finde ich in meiner Formelsammlung gerade keine genaue Infos wie dies in diesem Spezialfall funktioniert

Danke
Gruss Dinker

        
Bezug
Stammfunktion: partielle Integration
Status: (Antwort) fertig Status 
Datum: 13:42 Mo 20.07.2009
Autor: Loddar

Hallo Dinker!


Verwende hier die Methode der partiellen Integration für:
[mm] $$\integral{\ln(x) \ dx} [/mm] \ = \ [mm] \integral{\red{1}*\ln(x) \ dx}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Mo 20.07.2009
Autor: Dinker

Hallo Loddar

Leider gehört dies nicht zu unserem Themengebiet.


ln(2x)

Mache ich dann wie bei der Ableitung.

u = 2x      u' = 2
v = lnt      v'=lnt

und dann?

Danke
Gruss Dinker

Bezug
                        
Bezug
Stammfunktion: Integrationsregeln beachten
Status: (Antwort) fertig Status 
Datum: 13:59 Mo 20.07.2009
Autor: informix

Hallo Dinker,

> Hallo Loddar
>  
> Leider gehört dies nicht zu unserem Themengebiet.

wieso? [verwirrt]
Ich dachte, du bereitest dich aufs Abitur vor?

>  
>
> ln(2x)
>  
> Mache ich dann wie bei der Ableitung.
>  
> u = 2x      u' = 2
>  v = lnt      v'=lnt
>  
> und dann?

lies mal hier die MBIntegrationsregeln durch, dann findest du nähere Erklärungen.

Gruß informix

Bezug
        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mo 20.07.2009
Autor: tau

ist wie log und seiner Stammfunktion

[mm] \integral_{}^{}{ln(x) dx}=x*ln(x)-x [/mm]

Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Mo 20.07.2009
Autor: Dinker

Hallo

Ich verstehe das nicht


F(x) = $ [mm] \integral_{}^{}{ln(x) dx}=x\cdot{}ln(x)-x [/mm] $ ?
Danke
Gruss DInker

Bezug
                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Mo 20.07.2009
Autor: Arcesius

Hallo

> Hallo
>  
> Ich verstehe das nicht
>  
>
> F(x) = [mm]\integral_{}^{}{ln(x) dx}=x\cdot{}ln(x)-x[/mm] ?
>  Danke
>  Gruss DInker


Das ist das Ergebnis der richtig durchgeführten partiellen Integration.

Jedoch hast du erwähnt, dass ihr diese Technik nicht können musst, somit reicht es, wenn du dir das Ergebnis merkst.

Grüsse, Amaro

Bezug
                                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 Mo 20.07.2009
Autor: Dinker

Hallo

Für das spätere Studium muss ich das trotzdem können, aber ich verstehe nur Bahnhof


Gruss Dinker

Bezug
                                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Mo 20.07.2009
Autor: schachuzipus

Hallo Dinker,

> Hallo
>  
> Für das spätere Studium muss ich das trotzdem können,
> aber ich verstehe nur Bahnhof

Wie sollte das auch anders sein nach 30 Sekunden Beschäftigung mit dem Thema.

Informix hat dir einen link geschickt, da ist alles bestens erklärt, ein Beispiel ist dort ausführlich vorgerechnet,

Wenn du nicht mehr als 30 Sek. investierst, um es zu verstehen, ist klar, dass du nix kapierst.

Also schaue dir das Beispiel in Ruhe an und versuche, es auf deine Aufgabe zu übertragen.

In Mathe kommst du im Studium nicht weit mit bloßem  Draufschauen auf Sätze und Definitionen ...

>  
>
> Gruss Dinker

LG

schachuzipus


Bezug
                                                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Mo 20.07.2009
Autor: Dinker

Hallo

Danke für die Antwort.

Gibt es denn nicht etwas mit Zahlenbeispielen? Nur mit irgendwelchen Termen  versteh ich das nicht.

Danke
Gruss Dinker

Bezug
                                                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Mo 20.07.2009
Autor: informix

Hallo Dinker,

> Hallo
>  
> Danke für die Antwort.
>  
> Gibt es denn nicht etwas mit Zahlenbeispielen? Nur mit
> irgendwelchen Termen  versteh ich das nicht.
>  

MBFunktionen werden stets durch Terme festgelegt, also können wir dir die Differentaition nicht mit Zahlen allein erklären.

Aber: warum verwendest du nicht ein paar Minuten, um die MBIntegrationsregeln und den Tipp von Loddar anzuwenden?
Durch flüchtiges "Hinschauen" wirst du nie Mathe lernen können! üben, üben, üben, üben, ....

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]