matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenStammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Stammfunktion
Stammfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:16 Do 12.03.2009
Autor: Ayame

Aufgabe
p(x) = - [mm] \bruch{4}{e^{2}} [/mm] * (x - 2)² + [mm] \bruch{16}{e^{2}} [/mm]

Zu dieser Funktion brauch ich die Stammfunktion.

Nach ner halben stunde hab ich das zusammengekriegt :

P(x) = [mm] e^{-2} [/mm] * [mm] x^{-2} [/mm] - [mm] 4e^{-2} [/mm] * [mm] \bruch{1}{2}x [/mm] * (x²-4x+8) - [mm] 8e^{-2} [/mm]

Aber i-wie passt sie doch nicht
kann mir da einer helfen ?

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Do 12.03.2009
Autor: smarty

Hallo Ayame,

schauen wir uns das Polynom einmal genauer an:

> p(x) = - [mm]\bruch{4}{e^{2}}[/mm] * (x - 2)² + [mm]\bruch{16}{e^{2}}[/mm]
>  Zu dieser Funktion brauch ich die Stammfunktion.

Die Faktoren [mm] \green{-\bruch{4}{e^{2}}} [/mm] und [mm] \green{\bruch{16}{e^2}} [/mm] haben schon einmal nichts mit einem x zu tun, denn sie sind konstant und wir wissen, dass z.B:

[mm] \int{\green{a}*x\ dx}=\green{a}*\int{x\ dx} [/mm] ist.

D.h. aber im Klartext dein Integral sieht so aus ( ! ich setze schon einmal Klammern, nicht dass du sie nachher übersiehst und alles noch einmal machen musst ! )

[mm] I=\green{-\bruch{4}{e^{2}}}\left[\int{(x-2)^2\ dx}\right]+\green{\bruch{16}{e^2}}\int{1\ dx} [/mm]


Ob du nun mit der Substitution x-2=u arbeitest oder einfach [mm] (x-2)^2 [/mm] ausmultiplizierst, das bleibt dir überlassen :-)


Viele Grüße
Smarty

Bezug
                
Bezug
Stammfunktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:49 Do 12.03.2009
Autor: Ayame

also ich habs jetzt noch mal gemacht.

P(x)= - [mm] \bruch{4}{e^{2}} [/mm] * [mm] (\bruch{1}{3}x³ [/mm] - 2x² + 4x) + [mm] \bruch{16}{e^{2}} [/mm] x

Bezug
                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Do 12.03.2009
Autor: smarty

Hey PERFEKT [super]

War doch easy, oder?


> also ich habs jetzt noch mal gemacht.
>  
> P(x)= - [mm]\bruch{4}{e^{2}}[/mm] * [mm](\bruch{1}{3}x³[/mm] - 2x² + 4x) +
> [mm]\bruch{16}{e^{2}}[/mm] x

Wenn du nun noch den ganzen Term zusammenfasst, dann erhältst du als Stammfunktion:

[mm] P(x)=-\bruch{4}{3}e^{-2}x^3+8e^{-2}x^2 [/mm]

oder von mir aus auch

[mm] P(x)=-\bruch{4}{e^{2}}x^2\left(\bruch{1}{3}x-2\right) [/mm]


Schönen Abend noch :-)
Smarty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]