matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Di 20.11.2007
Autor: ebarni

Aufgabe
[mm] \integral_{0}^{2\pi}{cos^{8}x dx} [/mm]

Hallo Mathefreunde! Jetzt geht das Debakel weiter...;-)

wie finde ich denn jetzt eine Stammfunktion für dieses Integral?

Das scheint mir nicht so ganz trivial zu sein. Ich muss eine also eine Funktion finden, deren Ableitung [mm] cos^{8}x [/mm] ergibt. Sollte also schon mal in irgend einer Form einen Sinus enthalten.

Für einen kleinen Tipp wäre ich sehr dankbar.

Viele Grüße, Andreas

        
Bezug
Stammfunktion: mehrfach partielle Integration
Status: (Antwort) fertig Status 
Datum: 13:10 Di 20.11.2007
Autor: Loddar

Hallo Andreas!


Hier wirst Du wohl nicht um mehrfache partielle Integration kommen:
[mm] $$\integral{\cos^8(x) \ dx} [/mm] \ = \ [mm] \integral{\cos(x)*\cos^7(x) \ dx} [/mm] \ = \ ...$$


Meine Formelsammmlung gibt hier folgende rekursive Lösung an:
[mm] $$\integral{\cos^n(x) \ dx} [/mm] \ = \ [mm] \bruch{\cos^{n-1}(x)*\sin(x)}{n}+\bruch{n-1}{n}*\integral{\cos^{n-2}(x) \ dx}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Di 20.11.2007
Autor: ebarni

Hallo Loddar,

vielen Dank für Deine schnelle Antwort. Puh, das riecht ja nach richtig viel Arbeit...;-) Dann werde ich mich mal ranhalten. Vielen Dank noch einmal für Deinen prompten post!

Viele Grüße (mal wieder) aus der "Provinz" in die Hauptstadt

Andreas

Bezug
                        
Bezug
Stammfunktion: etwas erleichtert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Di 20.11.2007
Autor: Loddar

Hallo Andreas!


Etwas erleichtert wird einem ja die Schreibarbeit, da es sich um ein bestimmtes Integral handelt und wegen [mm] $\sin(0) [/mm] \ = \ [mm] \sin(2\pi) [/mm] \ = \ 0$ .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]