matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Di 10.10.2006
Autor: Vilinja

Aufgabe
1) Geben sie eine Stammfunktion an

a) f(x) = [mm] 0,4x^{4} [/mm]

b) f(x) = [mm] \bruch{3}{x^{2}} [/mm]

c) f(x) = (x + [mm] 5)^{3} [/mm]

d) f(x) = (4x + [mm] 2)^{3} [/mm]

e) f(x) = [mm] \bruch{1}{2}x^{-2-n} [/mm]

f) f(x) = [mm] \bruch{-2}{x^{n}} [/mm]

2) Überprüfen Sie, ob F eine Stammfunktion von f ist.

a) f(x) = [mm] \bruch{x}{\wurzel{x^{2} - 1}}; [/mm] F(x) = [mm] \wurzel{x^{2} - 1} [/mm]

b) f(x) = sin (x) * cos (x); F(x) = (sin [mm] (x))^{2} [/mm]

Für 1) habe ich ein paar Lösungen... für
a) F(x) = 0,08 [mm] x^{5} [/mm]
b) F(x) = - [mm] \bruch{3}{x} [/mm]
c) Wie bildet man von sowas die Stammfunktion? Muss ich erst die Klammer auflösen und dann jedes einzeln aufleiten, oder gibts da einen direkten Weg?
d) gleiches Problem wie c)
e) F(x) = - [mm] \bruch{1}{n}x^{-1-n} [/mm]
f) F(x) = - [mm] \bruch{2}{1-n}x^{1-n} [/mm]

Bei 2) müsste ja F'(x) = f(x) sein, oder? Aber wie leite ich [mm] \wurzel{x^{2} - 1} [/mm] und (sin [mm] (x))^{2} [/mm] ab?

Wäre dankbar für Tipps, bzw. Kontrolle, ob meine bisherigen Lösungen stimmen...

MfG
Vilinja

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Di 10.10.2006
Autor: M.Rex

Hallo Vilinja

> 1) Geben sie eine Stammfunktion an
>  
> a) f(x) = [mm]0,4x^{4}[/mm]
>  
> b) f(x) = [mm]\bruch{3}{x^{2}}[/mm]
>  
> c) f(x) = (x + [mm]5)^{3}[/mm]
>  
> d) f(x) = (4x + [mm]2)^{3}[/mm]
>  
> e) f(x) = [mm]\bruch{1}{2}x^{-2-n}[/mm]
>  
> f) f(x) = [mm]\bruch{-2}{x^{n}}[/mm]
>  
> 2) Überprüfen Sie, ob F eine Stammfunktion von f ist.
>  
> a) f(x) = [mm]\bruch{x}{\wurzel{x^{2} - 1}};[/mm] F(x) =
> [mm]\wurzel{x^{2} - 1}[/mm]
>  
> b) f(x) = sin (x) * cos (x); F(x) = (sin [mm](x))^{2}[/mm]
>  Für 1) habe ich ein paar Lösungen... für
>  a) F(x) = 0,08 [mm]x^{5}[/mm]

[daumenhoch]

>  b) F(x) = - [mm]\bruch{3}{x}[/mm]

Auch korrekt

>  c) Wie bildet man von sowas die Stammfunktion? Muss ich
> erst die Klammer auflösen und dann jedes einzeln aufleiten,
> oder gibts da einen direkten Weg?

Es gibt keinen schnelleren Weg,als die Klammern aufzulösen.
Dazu ein Tipp: es gilt: (a [mm] \pm [/mm] b)³=a³ [mm] \pm [/mm] 3a²b +3ab² [mm] \pm [/mm] b³

>  d) gleiches Problem wie c)

Siehe c)

>  e) F(x) = - [mm]\bruch{1}{n}x^{-1-n}[/mm]

Fast [mm] f(x)=\bruch{1}{2}x^{-2-n} [/mm]
[mm] \Rightarrow F(x)=\bruch{1}{2}*\bruch{1}{-1-n}*x^{-1-n}=\bruch{1}{2(-1-n)}x^{-1-n} [/mm]

>  f) F(x) = - [mm]\bruch{2}{1-n}x^{1-n}[/mm]

Korrekt

>  
> Bei 2) müsste ja F'(x) = f(x) sein, oder? Aber wie leite
> ich [mm]\wurzel{x^{2} - 1}[/mm] und (sin [mm](x))^{2}[/mm] ab?

Mir der Kettenregel.

Ich zeige es dir am Wurzelbeispiel
[mm] F(x)=\wurzel{x²-1} [/mm]
[mm] \Rightarrow F'(x)=\underbrace{\bruch{1}{2\wurzel{x²-1}}}_{aeussereAbl}*\underbrace{2x}_{innere Abl}=\bruch{x}{\wurzel{x²-1}} [/mm] e voilá

Genauso fängst du mit (sin(x))² an.

>
> Wäre dankbar für Tipps, bzw. Kontrolle, ob meine bisherigen
> Lösungen stimmen...
>  
> MfG
>  Vilinja

Marius

Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Do 12.10.2006
Autor: Vilinja

Zu 2)
Was ist die Kettenregel? Was ist äussere und innere Ableitung?

Danke
lg
Vilinja

Bezug
                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Do 12.10.2006
Autor: miniscout

Hallo!

Mathebank-Link zur Kettenregel [guckstduhier] MBKettenregel

Die Kettenregel lautet: Innere Ableitung mal äußere Ableitung.

Innere Ableitung ist die Ableitung von dem Term, der innerhalb einer Klammer steht und äußere Ableitung ist die Ableitung der Klammer, wobei du die Klammer sammt Inhalt bestehen lässt:

$f(x) = (x²-1)³$

$F(x) = [mm] \red{2x} [/mm] * [mm] \green{3(x²-1)²}$ [/mm]


Ciao miniscout [clown]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]