Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft
Für
Schüler
,
Studenten
, Lehrer, Mathematik-Interessierte.
Hallo Gast!
[
einloggen
|
registrieren
]
Startseite
·
Forum
·
Wissen
·
Kurse
·
Mitglieder
·
Team
·
Impressum
Forenbaum
Forenbaum
Hochschulmathe
Uni-Analysis
Reelle Analysis
UKomplx
Uni-Kompl. Analysis
Differentialgl.
Maß/Integrat-Theorie
Funktionalanalysis
Transformationen
UAnaSon
Uni-Lin. Algebra
Abbildungen
ULinAGS
Matrizen
Determinanten
Eigenwerte
Skalarprodukte
Moduln/Vektorraum
Sonstiges
Algebra+Zahlentheo.
Algebra
Zahlentheorie
Diskrete Mathematik
Diskrete Optimierung
Graphentheorie
Operations Research
Relationen
Fachdidaktik
Finanz+Versicherung
Uni-Finanzmathematik
Uni-Versicherungsmat
Logik+Mengenlehre
Logik
Mengenlehre
Numerik
Lin. Gleich.-systeme
Nichtlineare Gleich.
Interpol.+Approx.
Integr.+Differenz.
Eigenwertprobleme
DGL
Uni-Stochastik
Kombinatorik
math. Statistik
Statistik (Anwend.)
stoch. Analysis
stoch. Prozesse
Wahrscheinlichkeitstheorie
Topologie+Geometrie
Uni-Sonstiges
Gezeigt werden alle Foren bis zur Tiefe
2
Navigation
Startseite
...
Neuerdings
beta
neu
Forum
...
vor
wissen
...
vor
kurse
...
Werkzeuge
...
Nachhilfevermittlung
beta
...
Online-Spiele
beta
Suchen
Verein
...
Impressum
Das Projekt
Server
und Internetanbindung werden durch
Spenden
finanziert.
Organisiert wird das Projekt von unserem
Koordinatorenteam
.
Hunderte Mitglieder
helfen ehrenamtlich in unseren
moderierten
Foren
.
Anbieter der Seite ist der gemeinnützige Verein "
Vorhilfe.de e.V.
".
Partnerseiten
Weitere Fächer:
Vorhilfe.de
FunkyPlot
: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Startseite
>
MatheForen
>
Integralrechnung
>
Stammfunktion
Foren für weitere Schulfächer findest Du auf
www.vorhilfe.de
z.B.
Deutsch
•
Englisch
•
Französisch
•
Latein
•
Spanisch
•
Russisch
•
Griechisch
Forum "Integralrechnung" - Stammfunktion
Stammfunktion
<
Integralrechnung
<
Analysis
<
Oberstufe
<
Schule
<
Mathe
<
Vorhilfe
Ansicht:
[ geschachtelt ]
|
Forum "Integralrechnung"
|
Alle Foren
|
Forenbaum
|
Materialien
Stammfunktion: Frage (beantwortet)
Status
:
(Frage) beantwortet
Datum
:
15:09
Do
12.01.2006
Autor
:
KarlArsch57
Hallo ich bins nochmal ;).
Ich muss von der Funktion
f'(x)= [mm] \wurzel{5x-4} [/mm]
so nun hab ich als Stammfunktion
f(x)= [mm] \bruch{2}{15}(5x-4)^{\bruch{3}{2}} [/mm]
Kann das stimmen?
Bezug
Stammfunktion: + Integrationskonstante
Status
:
(Antwort) fertig
Datum
:
15:24
Do
12.01.2006
Autor
:
Roadrunner
Hallo Karl!
Wenn Du nun noch die Integrationskonstante $+ \ C$ hinzufügst ...
... perfekt!
Gruß vom
Roadrunner
Bezug
Ansicht:
[ geschachtelt ]
|
Forum "Integralrechnung"
|
Alle Foren
|
Forenbaum
|
Materialien
www.unimatheforum.de
[
Startseite
|
Forum
|
Wissen
|
Kurse
|
Mitglieder
|
Team
|
Impressum
]