matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationStammfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Stammfunktion
Stammfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Fr 06.01.2006
Autor: Gwin

Aufgabe
Stammfunktion von: [mm] \bruch{tan(x)}{sin(2x)} [/mm]

hallo zusammen...

die gesuchte stammfunktion ist laut musterlösung [mm] \bruch{1}{2} [/mm] tan(x) + C ...
verstehe aber nicht wie man da hin kommt... könnte mir das jemand schritt für schritt mal zeigen?
auch wenn ich [mm] \bruch{1}{2} [/mm] tan(x) + C ableite komme ich nicht auf [mm] \bruch{tan(x)}{sin(2x)}... [/mm]

vielen dank schon mal im vorraus...

Mfg Gwin

        
Bezug
Stammfunktion: Tipp!
Status: (Antwort) fertig Status 
Datum: 18:20 Fr 06.01.2006
Autor: Loddar

Hallo Gwin!


Schreibe folgendermaßen um:

[mm] $\tan(x) [/mm] \ =\ [mm] \bruch{\sin(x)}{\cos(x)}$ [/mm]

[mm] $\sin(2x) [/mm] \ =\ [mm] 2*\sin(x)*\cos(x)$ [/mm]


Anschließend (nachdem Kürzen) im Zähler ersetzen: $1 \ = \ [mm] \sin^2(x)+\cos^2(x)$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Fr 06.01.2006
Autor: Gwin

hi Loddar...

vielen dank für deinen tipp...

habe aber den schritt mit $ 1 \ = \ [mm] \sin^2(x)+\cos^2(x) [/mm] $ nicht gemacht...

habe es folgendermaßen gemacht...

f(x)= [mm] \bruch{tan(x)}{sin(2x)} [/mm] = [mm] tan(x)*\bruch{1}{sin(2x)} [/mm]
= [mm] \bruch{sin(x)}{cos(x)}*\bruch{1}{2*sin(x)*cos(x)} [/mm]
[mm] =\bruch{1}{2*cos(x)^{2}} [/mm]

ab hier verstehe ich es dann... die stammfunktion von [mm] \bruch{1}{cos(x)^{2}} [/mm] = tan(x)...
dann tan(x)*1/2 und man hat es...

oder habe ich irgendwo nen fehler gemacht und bin durch zufall auf die lösung gekommen

mfg Gwin

Bezug
                        
Bezug
Stammfunktion: Alles okay!
Status: (Antwort) fertig Status 
Datum: 19:06 Fr 06.01.2006
Autor: Loddar

Hallo Gwin!


Kein Einspruch oder Einwand: [daumenhoch] !


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]