matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfkt : wurzel(1-x²)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Stammfkt : wurzel(1-x²)
Stammfkt : wurzel(1-x²) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfkt : wurzel(1-x²): Ist meine Lösung richtig ?
Status: (Frage) beantwortet Status 
Datum: 22:20 Mi 06.12.2006
Autor: DieKleineSuesse

Hallo,
folgende Frage...

f(x)= sqrt(1-x²)

Ist F(x) = (1/3x) * $ [mm] sqrt((1-x²)^3) [/mm] $ ???


Das ist meine Lösung .. Nur wenn ich diese in den Rechner eingeben, so zeigt er mir an, dass sie nicht die Stammfunktion sein kann ... Habe ich etwas falsch gemacht ????

Mein Rechenweg ...

Substitution :

x²=z

2x=dz/dx  --> dx = dz/2x


Nun lautet F(x) folgendermaßen :

F(x)= (2/3) * $ [mm] sqrt((1-x²)^3) [/mm] $ * (dz/2x)


.... usw.. und dann komme ich am Ende halt zu der Stammfkt F(x) = (1/3x) * $ [mm] sqrt((1-x²)^3) [/mm] $ ...


Wär echt nett, falls mir jmd sagen könnten, ob dies Lösung richtig ist .. :)

Vielen DANK!!!!


        
Bezug
Stammfkt : wurzel(1-x²): Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Mi 06.12.2006
Autor: TRANSLTR

Nein, sorry die Lösung stimmt nicht...hatte das gleiche Problem vor ein Paar Wochen.
Die richtige Lösung ist:
[mm] \bruch{x}{2}\*\wurzel{1-x^{2}} [/mm] + [mm] \bruch{1}{2}\* [/mm] ArcSin (x)
-->Formelsammlung...
Die Idee ist, du substituierst x mit Sin(u).
Was du auch noch brauchst ist die Doppelwinkelformel:
[mm] \bruch{Sin(2u)}{2} [/mm] = Sin(u)*Cos(u)

Diese Aufgabe ist nicht ganz ohne..hatte auch Schwierigkeiten daran ..viel Glück ;)

Bezug
        
Bezug
Stammfkt : wurzel(1-x²): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Mi 06.12.2006
Autor: DieKleineSuesse

Hmmmmm..... achsoo .. wieso kann ich das denn nicht so machen wie ich es versucht habe ? Könntest du mir das erklären , denn etw. mit ArcSinus oder so hatte ich noch nie ... WIeos geht denn meine Lösung nicht ? Sie ist doch konsquent mit der Substitutionsregle durchgeführt worden ??

MfG

Bezug
                
Bezug
Stammfkt : wurzel(1-x²): Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Do 07.12.2006
Autor: leduart

Hallo
Deine Substitution klappt nicht, indem, was du geschrieben hast kommt ja z und x noch unter dem Integral vor, und [mm] x=\wurzel{z} [/mm] damit wird dein Integral komplzierter als vorher!
Du musst schon die Substitution x=sinz machen, dann 1-sin^2z=cos^2z und es geht .
Wenn du vielleicht nur ein bestimmtes Integral von 0 bis 1 brauchst, solltest du sehen, dass die fkt einen Halbkreis mit Radius 1 beschreibt.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]