matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauStabkräfte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maschinenbau" - Stabkräfte
Stabkräfte < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabkräfte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Sa 30.06.2007
Autor: detlef

Aufgabe
[Dateianhang nicht öffentlich]


Hallo,

kann mir jemand einen Tipp geben, wie man diese Aufgabe löst, ich finde gar kein Ansatz! Danke

detlef

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Stabkräfte: Hinweise
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 30.06.2007
Autor: Loddar

Hallo Detlef!


Um welche Länge [mm] $\Delta l_2$ [/mm] wird der mittlere Stab $2_$ bei der Temperaturerhöhung verlängert? Welche Spannung [mm] $\sigma_2$ [/mm] bzw. welche Stabkraft [mm] $F_2$ [/mm] gehört dazu?

Die Dehnungen in den Randstäben $1_$ und $3_$ sind aus Symmetriegründen identisch, d.h. die vertikale Verschiebung der starren Platte verteilt sich gleichmäßig auf beide Stäbe: [mm] $\Delta l_1 [/mm] \ = \ [mm] \Delta l_3$ [/mm] .

Dabei muss aber noch die unterschiedliche Stablänge infolge der Verdrehung [mm] $\beta$ [/mm] berücksichtigt werden.

Als Formeln benötigst Du hier:

[mm] $\varepsilon [/mm] \ = \ [mm] \bruch{\Delta l}{l} [/mm] \ = \ [mm] \alpha*\Delta \vartheta$ [/mm]

[mm] $\sigma [/mm] \ = \ [mm] \varepsilon*E [/mm] \ = \ [mm] \bruch{\Delta l}{l}*E$ [/mm]

[mm] $\sigma [/mm] \ = \ [mm] \bruch{F}{A}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Stabkräfte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Sa 30.06.2007
Autor: detlef

also ist für Stab 2 die Spannung [mm] \sigma [/mm] = [mm] \alpha [/mm] * [mm] \Delta \partial [/mm] und dann noch [mm] \sigma [/mm] = F/A, ok, aber was muss ich bei den Stäben noch beachten, also weil sie ja schief stehen!???

also die Verlängrung muss doch gleich sein mit Stab 2 oder?

detlef

Bezug
                        
Bezug
Stabkräfte: vertikale Verformung
Status: (Antwort) fertig Status 
Datum: 20:45 Sa 30.06.2007
Autor: Loddar

Hallo Detlef!


> also ist für Stab 2 die Spannung [mm]\sigma[/mm] = [mm]\alpha[/mm] * [mm]\Delta \partial[/mm]

Nicht ganz ... da fehlt noch der Faktor $E_$ .


> und dann noch [mm]\sigma[/mm] = F/A, ok, aber was muss ich bei den
> Stäben noch beachten, also weil sie ja schief stehen!???

Du musst je bedenken, dass die Verformung aus dem Stab $2_$ der vertikalen Verformung für Stab $1_$ und $3_$ entspricht. Für die Kräfteberechnung musst du also die richtigen (= schrägen) Längen einsetzen.


Gruß
Loddar


Bezug
                                
Bezug
Stabkräfte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 Sa 30.06.2007
Autor: detlef

Für die schrägen Stäbe ist das dann ja [mm] cos(\gamma)*l, [/mm] aber wie beziehe ich das in meine Rechnung ein?

Wenn [mm] \epsilon [/mm] überall gleich ist, dann kommt ja gar nicht mehr die länge ins spiel?!

detlef

Bezug
                                        
Bezug
Stabkräfte: auf 2 Stäbe verteilen
Status: (Antwort) fertig Status 
Datum: 21:07 Sa 30.06.2007
Autor: Loddar

Hallo Detlef!


> Für die schrägen Stäbe ist das dann ja [mm]cos(\gamma)*l,[/mm] aber
> wie beziehe ich das in meine Rechnung ein?

[aeh] Wo kommt denn hier das [mm] $\gamma$ [/mm] her?

  

> Wenn [mm]\epsilon[/mm] überall gleich ist, dann kommt ja gar nicht
> mehr die länge ins spiel?!

Du darfst  ja nicht vergessen, dass Du die Dehnung aus Stab $2_$ (gleichmäßig) auf die anderen zwei Stäbe $1_$ und $3_$ verteilen musst. Bzw. die Druckkraft [mm] $F_2$ [/mm] , die im Stab $2_$ erzeugt wird durch die Temperaturausdehnung, bewirkt jeweils an den Anschlusspunkten von Stab $1_$ und $3_$ folgende Zugkraft: [mm] $F_{1,v} [/mm] \ = \ [mm] F_{3,v} [/mm] \ = \ [mm] \bruch{1}{2}*F_2$ [/mm] .

Gruß
Loddar


Bezug
                                                
Bezug
Stabkräfte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Sa 30.06.2007
Autor: detlef

ja aber da kommt nicht mehr die länge ins spiel oder der winkel?!


detlef

Bezug
                                                        
Bezug
Stabkräfte: umrechnen
Status: (Antwort) fertig Status 
Datum: 22:29 Sa 30.06.2007
Autor: Loddar

Hallo Detlef!


Du musst für die Stäbe $1_$ und $3_$ aber diese Vertikalkräfte noch in Längskräfte umrechnen, da diese beiden Stäbe Pendelstützen sind und nur Normalkräfet (= Längskräfte) aufnehmen können.

Und da kommt dann auch der Winkel [mm] $\beta$ [/mm] ins Spiel ...


Gruß
Loddar


Bezug
                                                                
Bezug
Stabkräfte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:22 So 01.07.2007
Autor: detlef

also [mm] 1/2*F_2 [/mm] * cos()  für die Stäbe 1 und 3?

Bezug
                                                                        
Bezug
Stabkräfte: nicht richtig
Status: (Antwort) fertig Status 
Datum: 09:26 So 01.07.2007
Autor: Loddar

Hallo Detlef!


[notok] Du musst durch [mm] $\cos(\beta)$ [/mm] teilen.


Gruß
Loddar


Bezug
                                                                                
Bezug
Stabkräfte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 So 01.07.2007
Autor: detlef

kanst du mir das bitte noch kurz erklären, wieso man teilen muss?



Bezug
                                                                                        
Bezug
Stabkräfte: Winkelfunktion
Status: (Antwort) fertig Status 
Datum: 10:59 So 01.07.2007
Autor: Loddar

Hallo Detlef!


Für den [mm] $\cos$ [/mm] gilt doch:  [mm] $\cos(\beta) [/mm] \ = \ [mm] \bruch{\text{Ankathete}}{\text{Hypotenuse}} [/mm] \ = \ [mm] \bruch{l_v}{l_1}$ [/mm]

[mm] $\gdw$ $l_1 [/mm] \ = \ [mm] \bruch{l_v}{\cos(\beta)}$ [/mm]


Gruß
Loddar


Bezug
                                                                                                
Bezug
Stabkräfte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:58 So 01.07.2007
Autor: detlef

ok danke, jetzt hab ich das verstanden!

detlef

Bezug
                                                                                                        
Bezug
Stabkräfte: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:44 So 01.07.2007
Autor: detlef

ich sehe gerade, dass in der Lösung für [mm] s_2 [/mm]

[mm] s_2 [/mm] = [mm] E*A*\alpha*\Delta [/mm] V [mm] *(1-1/(1+2*cos^3(\beta)) [/mm]

und für

[mm] s_1 [/mm] = [mm] E*A*\alpha*\Delta [/mm] V [mm] *cos^2(\beta)/(1+2*cos^3(\beta) [/mm]

das kommt ja auf meinem Weg nicht so ganz heraus oder?

Bezug
                                                                                                                
Bezug
Stabkräfte: Hm ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 So 01.07.2007
Autor: Loddar

Hallo Detlef!


Du hast Recht, das stimmt nicht mit unserem Ergebnis überein. Habe ich da mein Modell vielleicht doch zu sehr vereinfacht? [kopfkratz3]


Gruß
Loddar


Bezug
                                                                                                                
Bezug
Stabkräfte: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 03.07.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]