matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenStabilitätsgebiet
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentialgleichungen" - Stabilitätsgebiet
Stabilitätsgebiet < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilitätsgebiet: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:05 So 18.11.2012
Autor: unibasel

Aufgabe
http://www.tu-chemnitz.de/mathematik/part_dgl/teaching/WS2009_Numerik_von_ODEs/Beiblatt_Stabilit%C3%A4tsgebiete_ESV.pdf
Es geht um Beispiel 2.48 [mm] (\theta-Methode) [/mm]

Meine Fragen:
a) Wie bestimmt man jetzt bei diesem Verfahren die Stabilitätsfunktion?
b) Wie kommt man auf die Stabilitätsgebiete?
Def.: Der Bereich M:={z [mm] \in \IC: [/mm] |g(z)|<1} heisst Stabilitätsgebiet. Ein Verfahren heisst A-stabil, falls: {z [mm] \in \IC: [/mm] Re(z)<0} [mm] \subset [/mm] M, wenn also |g(z)|<1 gilt [mm] \forall [/mm] Re(z)<0
c) Und wann kann man sagen, dass es A-stabil ist?
(Ich kann nur erkennen, dass bei [mm] \theta=0.5 [/mm] bis [mm] \theta=1.0 [/mm] einfach das äussere Gebiet blau ist und drinnen weiss, mehr sagt mir das nicht)

Wir haben dieses Thema ca. 20 Minuten in der Vorlesung besprochen und haben jetzt dazu Aufgaben, aber ich möchte gerne zuerst überhaupt verstehen anhand dieses Beispiels, wie das überhaupt geht.

Danke schon mal für die Hilfe :)

        
Bezug
Stabilitätsgebiet: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 So 18.11.2012
Autor: unibasel

Ist das so schwierig? :(

Bezug
        
Bezug
Stabilitätsgebiet: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mo 19.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]