matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenStabilität schaltendes System
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Stabilität schaltendes System
Stabilität schaltendes System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilität schaltendes System: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:47 Fr 07.08.2020
Autor: Braed

Ich habe ein schaltendes System und will die asymptotische Stabilität beweisen.
Das System hat die Form [mm] \dot{{x}}(t)={A}_{\sigma}\cdot{x}(t)+{B}_{\sigma}\cdot [/mm] u(t) mit konstanten Koeffizienten und dem Eingangssignal u(t).
Hat jemand eine Idee, wie man am besten vorgehen sollte oder schon eine Lösung zu diesem Problem parat?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
https://mathforums.com/, https://www.onlinemathe.de/, https://www.mathelounge.de/

        
Bezug
Stabilität schaltendes System: Generelles
Status: (Antwort) fertig Status 
Datum: 10:53 Sa 08.08.2020
Autor: Infinit

Halle Braed,
willkommen hier im Forum.
Die generelle Vorgehensweise kann ich hier gerne mal skizzieren. Wieviel Aufwand das dann in Bezug auf Deine Matrizen ist, kann ich nicht einschätzen.
Die Grundidee ist auf jeden Fall, dass man eine Ruhelage des Systems findet, meist mit [mm] {x_r} [/mm] bezeichnet und eine "passende" Störung auf dieses System gibt. Diese Störung [mm] \delta [/mm] lässt sich allgemein ausdrücken als
[mm] \delta = x (t) - x_r [/mm].
Die Frage ist nun, wie sich dieses [mm] \delta (t) [/mm] im Laufe der Zeit verhält und das lässt sich mithilfe der Jacobi-Matrix bestimmen, die die ersten Ableitungen von [mm] x(t) [/mm] enthält. Damit hat man
[mm] \dot{\delta(t)} = J(x_r) \cdot \delta [/mm]
Anschließend schaut man sich die Eigenwerte der Jacobi-Matrix an. Sind diese negativ, so ist das System asymptotisch stabil.
Viele Grüße,
Infinit

Bezug
                
Bezug
Stabilität schaltendes System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Sa 08.08.2020
Autor: Braed

Vielen Dank für die Antwort.
Die Vorgehensweise ist mir bekannt. Ich gehe bei meinem Problem davon aus, dass alle Teilsysteme asymptotisch stabil sind. Trotzdem kann durch unpassende Schaltvorgänge das gesamte System ein instabiles Verhalten zeigen. Zudem hängt das Schalten vom Zustand x(t) ab und kann somit nicht genau bestimmt werden.

Bezug
                        
Bezug
Stabilität schaltendes System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 So 09.08.2020
Autor: leduart

Dann solltest du dein "System" hier vorstellen und nicht einfach ein anscheinend bekanntes u hinschreiben? jetzt schreibst du u(t)=u(x(t)9 oder was soll "hängt das Schalten vom Zustand x(t) ab" bedeuten?
ledum

Bezug
                                
Bezug
Stabilität schaltendes System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 So 09.08.2020
Autor: Braed

Ja kann ich machen. Tut mir leid für die wenigen Infos zu Beginn, bin neu hier.

Bei meinem System gehe ich davon aus, dass das Eingangssignal u(t), der Startpunkt x(t=0) und die Matrizen A und B bekannt sind. Diese Matrizen beinhalten konstante Koeffizienten aber sind Abhängigkeit von Schaltzustand [mm] $\sigma$. [/mm] Das bedeutet, je nach [mm] $\sigma$ [/mm] habe ich unterschiedliche Matrizen. Dieses [mm] $\sigma$ [/mm] hängt jedoch vom Eingangszustand, also z.B im Bereich 0 < x < 100 ist [mm] $\sigma [/mm] = 1$ bzw. bei mehreren Dimensionen kann dies z.B. als Numerierung von Feldern/Gebieten etc. betrachtet werden. Zudem sollen alle Teilsysteme asymptotisch stabil sein.

Ich hoffe das ist verständlich. Vielen Dank.

Bezug
                                        
Bezug
Stabilität schaltendes System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Do 13.08.2020
Autor: Infinit

Hallo Braed,
wenn ich Dich richtig verstehe, so beinhalten die Matrizen konstante Elemente und es gibt eine endliche Anzahl dieser Matrizen, die in Abhängigkeit von einem Signal ausgewählt bzw. geschaltet werden. Jede dieser Matrizen, zwischen denen hin- und hergeschaltet wird, ist asymptotisch stabil. Dabei ist es jedoch nicht ausgechlossen, dass eine bestimmte Kombination von Eingangssignal und Matrix instabil werden könnte. Da ist mir kein Verfahren bekannt, mit dem man eine analytische Aussage über die Stabilität solch eines Schaltvorgangs machen kann. Simulationsläufe geben sicher einen gewissen Eindruck, sind aber kein Beweis.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]