matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikStabile Bahnen in R^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Stabile Bahnen in R^n
Stabile Bahnen in R^n < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabile Bahnen in R^n: insbesondere für n>3
Status: (Frage) beantwortet Status 
Datum: 22:15 Di 30.10.2007
Autor: benevonmattheis

Aufgabe
Das Äquivalent zum Keplerpotential in einem n-dimensionalen Raum (n>=3) ist [mm] V(r)=-c/r^{n-2} [/mm] mit c>0 und [mm] r=|\overrightarrow{r}|, \overrightarrow{r}=(x1,...,xn)(dieses [/mm] Zentralpotential führt zu einem Kraftfeld, dass für [mm] r\not=0 [/mm] divergenzfrei ist). Außerdem lässt sich zeigen, dass (neben der Energie) der (verallgemeinerte) Drehimpuls mit Betrag L erhalten ist und die Bahn in einer zweidimensionalen Ebene liegt.

Zeigen Sie mit Hilfe des Effektivpotentials, dass für n>3 KEINE stabile Bahnen möglich sind.

Hallo Leute,
zunächst gehe ich davon aus, das stabile Bahnen geschlossene Bahnen meint. Mein Ansatz ist, dass das Effektive Potential kein Minimum haben darf, damit es keine Potentialfalle gibt. Alles klar, das effektive Potential ist
Veff=V+L²/(2*mü*r²)=
[mm] -c/r^{n-2}+L²/(2*mü*r²) [/mm]
[mm] Veff'=(n-2)*c/r^{n-1}-L²/(mü*r^{3}) [/mm]
[mm] Veff''=-(n-2)*(n-1)c/r^{n}+3*L²/(mü*r^{4}) [/mm]

Ok, angenommen n=5:
[mm] Veff'=3*c/r^{4}-L²/(mü*r^{3}) [/mm]
[mm] =\underbrace{1/r^{3}}_{\not=0}*(3c/r-L²/mü)=0 [/mm]
--> r=3c*mü/L²
Veff''(r=3*c*mü/L²; [mm] n=5)=-12*c/r^{^5}+3*L²/(mü*r^{4}) [/mm]
[mm] =1/r^{4}*[-12cL²/(3c*mü)+3L²/mü] [/mm]
[mm] =1/r^{4}*L²/mü*(-4+3)<0 [/mm]
man hat also einen Hochpunkt, also gibts keine geschlossen Bahn.
Aber wie zeige ich das für alle n. Induktion wäre ne möglichkeit, allerdings muss ich ja zeigen, dass [mm] Veff'\not=0 [/mm] oder Veff'=0 UND Veff''<=0.
Wie macht man sowas?
Oder reicht eine "Physikerinduktion" indem ich noch n=4 und n=6 zeige? Ich meine, es ist ja schließlich Physik^^.
Danke Leute,
Benevonmattheis

        
Bezug
Stabile Bahnen in R^n: n nicht festlegen!
Status: (Antwort) fertig Status 
Datum: 22:40 Di 30.10.2007
Autor: rainerS

Hallo!

Dein Ansatz ist schon richtig, aber warum legst du n fest?


>  zunächst gehe ich davon aus, das stabile Bahnen
> geschlossene Bahnen meint. Mein Ansatz ist, dass das
> Effektive Potential kein Minimum haben darf, damit es keine
> Potentialfalle gibt. Alles klar, das effektive Potential
> ist
>  Veff=V+L²/(2*mü*r²)=
>  [mm]-c/r^{n-2}+L²/(2*mü*r²)[/mm]
>  [mm]Veff'=(n-2)*c/r^{n-1}-L²/(mü*r^{3})[/mm]
>  [mm]Veff''=-(n-2)*(n-1)c/r^{n}+3*L²/(mü*r^{4})[/mm]

Also:

[mm] V'_{\text{eff}} = \bruch{1}{mr^3} \left((n-2)cmr^{4-n} -L^2\right) \implies r = \left(\bruch{(n-2)cm}{L^2}\right)^{1/(n-4)}[/mm]

und in [mm]V''_{\text{eff}}[/mm] einsetzen.

  VIele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]