matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenStaatsverschuldung Syraland
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Staatsverschuldung Syraland
Staatsverschuldung Syraland < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Staatsverschuldung Syraland: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Di 03.06.2008
Autor: hase-hh

Aufgabe
Die Staatsverschuldung von Syraland hatte folgende Entwicklung:

Jahr   Staatsverschuldung (Millionen Syra)

1970   20,6

1975   36,5

1980   57,2

1985   99,8

1990   163,5

1995   282,0

2000   461,2

2005   785,4  

1.1. Bestimmen Sie aus den Daten eine Exponentialfunktion (zur Basis e), die näherungsweise die Entwicklung der Staatsverschuldung beschreibt (Zeitschritt: 1 Jahr).

1.2. Berechnen Sie die voraussichtliche Verschuldung für die Jahre 2006 und 2007.

1.3. Um wie viel Prozent nimmt die Staatsverschuldung von 2006 nach 2007 nach Ihren Berechnungen zu?

Moin!

Hier scheitere ich schon an der 1. Teilaufgabe.

Meine Idee(n):

Ich würde dafür die Formel benutzen:  N(t) = [mm] N_0 [/mm] * [mm] e^{k*t} [/mm]

Da ich einen Zeitraum von 5 Jahren betrachte, würde ich t=5 setzen (bzw. 5*t^*)

Dann einsetzen  N(5)=36,5

36,5 = 20,6 * [mm] e^{5k} [/mm]  

1,7718 = [mm] e^{5k} [/mm]   | ln

ln 1,7718 = 5*k

k = 0,1144

Wenn ich z.B. bilde  nach 20 Jahren... N(20)=163,5

163,5 = [mm] 20,6*e^{20k} [/mm]

7,9369 = [mm] e^{kt} [/mm]   | ln

2,0715 = 20 k

k = 0,1036  

Leider ist das Ergebnis nicht korrekt, nach Lehreraussage. Warum? Was mache ich falsch?

Oder muss ich alle k-Werte bilden und dann das arithmetische Mittel bilden???  [Dann erhielte ich k=0,10537 ]


Vielen Dank für eure Hilfe!

Gruß
Wolfgang






        
Bezug
Staatsverschuldung Syraland: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Di 03.06.2008
Autor: Martinius

Moin hase-hh,

hat denn dein Lehrer dir die Werte gegeben, die er als richtig erachtet?

Ich würde auch die Funktion

[mm] $N(t)=N_0*e^{k*t}$ [/mm]

logarithmieren:

[mm] $lnN(t)=k*t+lnN_0$ [/mm]

und dann eine Regression durchführen nach der Methode der kleinsten Fehlerquadrate: also eine Ausgleichsgerade durch die Auftragung der logarithmierten Geldbeträge gegen die Zeit (Jahre). Das ist heutzutage bestimmt in jedem Schultaschenrechner drin.

Dann hat man die Steigung der Geraden (k) und den Achsenabschnitt [mm] (lnN_0), [/mm] den man noch zum Exponenten von e erheben muss.

Damit komme ich auf:

k = 0,103449 1/a  und  [mm] N_0 [/mm] = 20,926678 Mio

[mm] $N(t)=20,926678*e^{0,103449*t}$ [/mm]


Ich kann mich aber erinnern im Lehrbuch meiner Nachhilfeschülerin schon einfachere Methoden der Gewinnung einer Näherungsfunktion gesehen zu haben (ohne Kurvenregression).


LG, Martinius


Bezug
                
Bezug
Staatsverschuldung Syraland: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Di 03.06.2008
Autor: hase-hh

Moin Martin,

danke für deine Antwort.

Ich habe nochmal ein bisschen hin- und hergerechnet... Komme jetzt zwar nicht ganz auf deine Lösung (vermutlich genauer als "unsere"), aber immerhinque!

1. Ich teile immer den Wert der aktuellen Periode durch den Wert der Vorperiode... dann erhalte ich

036,5 1,771844660
057,2 1,567123288
099,8 1,744755245
163,5 1,638276553
282.0 1,724770642
461,2 1,635460993
785,4 1,702948829

Diese Werte werden addiert...

= 11,78518021

und davon der Mittelwert gebildet ( d.h. geteilt durch 7)

= 1,683597173
  
davon wird dann der ln gebildet und durch 5 geteilt:

ln(1,68359173) / 5 = 0,10418654

=>  N(t) = [mm] 20,6^*e^{0,10418654*t} [/mm]


Probe  

N(5) = 34,68
N(20) = 165,5
N(35) = 789,83

Die Abweichungen sind wohl normal, da es sich um eine Näherungsfunktion handelt.

1.2.

2006  N(36)= 919,11

2007  N(37) = 1067,26

1.3. Prozentuale Zunahme von 2006 nach 2007


[mm] \bruch{1067,26}{919,11} [/mm] = 1,16  

=> 16%ige Zunahme.


Gruß
Wolfgang


Bezug
                        
Bezug
Staatsverschuldung Syraland: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Di 03.06.2008
Autor: Martinius

Moin Wolfgang,

> Moin Martin,
>  
> danke für deine Antwort.
>
> Ich habe nochmal ein bisschen hin- und hergerechnet...
> Komme jetzt zwar nicht ganz auf deine Lösung (vermutlich
> genauer als "unsere"), aber immerhinque!
>  
> 1. Ich teile immer den Wert der aktuellen Periode durch den
> Wert der Vorperiode... dann erhalte ich
>  
> 036,5 1,771844660
>  057,2 1,567123288
>  099,8 1,744755245
>  163,5 1,638276553
>  282.0 1,724770642
>  461,2 1,635460993
>  785,4 1,702948829
>  
> Diese Werte werden addiert...
>
> = 11,78518021
>  
> und davon der Mittelwert gebildet ( d.h. geteilt durch 7)
>
> = 1,683597173
>    
> davon wird dann der ln gebildet und durch 5 geteilt:
>  
> ln(1,68359173) / 5 = 0,10418654
>  
> =>  N(t) = [mm]20,6^*e^{0,10418654*t}[/mm]

>  
>
> Probe  
>
> N(5) = 34,68
>  N(20) = 165,5
> N(35) = 789,83



Diese Werte kommen mit deiner Funktion tatsächlich heraus.

  

> Die Abweichungen sind wohl normal, da es sich um eine
> Näherungsfunktion handelt.
>
> 1.2.
>  
> 2006  N(36)= 919,11
>  
> 2007  N(37) = 1067,26


Mit deiner Funktion bekomme ich da andere Werte heraus:

2006  N(36) = 876,56

2007  N(37) = 972,81


> 1.3. Prozentuale Zunahme von 2006 nach 2007
>
>
> [mm]\bruch{1067,26}{919,11}[/mm] = 1,16  
>
> => 16%ige Zunahme.


Dementsprechend stimmt auch der Prozentsatz nicht.

>
> Gruß
>  Wolfgang


LG, Martinius  


Bezug
                                
Bezug
Staatsverschuldung Syraland: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Di 03.06.2008
Autor: hase-hh

Moin!

oh, da hat EXCEL wieder mal beim Kopieren was dazugezählt. :-(

> > 1.2.
> >  

> > 2006  N(36)= 919,11
> >  

> > 2007  N(37) = 1067,26
>
>
> Mit deiner Funktion bekomme ich da andere Werte heraus:
>  
> 2006  N(36) = 876,56
>  
> 2007  N(37) = 972,81

  
habe ich jetzt auch raus!

1.3. Prozentuale Zunahme von 2006 nach 2007

[mm] \bruch{972,81}{876,56} [/mm] =1,1098

=> Zunahme um 10,98%

Gruß
Wolfgang

Bezug
                                        
Bezug
Staatsverschuldung Syraland: Richtig!
Status: (Antwort) fertig Status 
Datum: 23:42 Di 03.06.2008
Autor: Loddar

Hallo Wolfgang!


[daumenhoch]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]