matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeStaatsexamen Numerik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Numerik linearer Gleichungssysteme" - Staatsexamen Numerik
Staatsexamen Numerik < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Staatsexamen Numerik: Mehrere Theoriefragen
Status: (Frage) beantwortet Status 
Datum: 16:07 Do 08.02.2007
Autor: Musele

Aufgabe
1. Wie berechnet sich der Aufwand beim Gauß-Algorithmus?

2. Warum ist das Cholsky-Verfahren schneller als Gauß?

1. Ich habe die Lösung zwar hier, aber ich verstehe den letzten Schritt nicht:

[mm] n(n+1)+\bruch{1}{3}(n^3+\bruch{3}{2}n^2+\bruch{n}{2}) [/mm] = [mm] \bruch{n^3}{3}+O(n^3) [/mm]

Das Landau-Symbol bedeutet doch, dass sich der Rest (außer [mm] \bruch{n^3}{3} [/mm] verhält wie [mm] n^3 [/mm] ) oder?
Also ist dann der Aufwand [mm] n^3? [/mm]

Macht man das bei Aufwandsrechnungen immer so?

2. Meine Idee war: weil es immer ohne Pivotsuche durchführbar ist??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Staatsexamen Numerik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Do 08.02.2007
Autor: Musele

Ich hab vergessen Hallo und Tschüss zu sagen und sage das hiermit!

Außerdem möchte ich mich für mögliche Antworten bedanken.

Ich studiere übrigens Lehramt und mache im April Staatsexamen und bin neu hier...


(Kann man eigentlich seine Beiträge editieren, wenn man sie schon abgeschickt hatte?)

Bezug
        
Bezug
Staatsexamen Numerik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Do 08.02.2007
Autor: Bastiane

Hallo Musele!

> 2. Warum ist das Cholsky-Verfahren schneller als Gauß?

> 2. Meine Idee war: weil es immer ohne Pivotsuche
> durchführbar ist??

Ich würde sagen, weil beim Cholesky-Verfahren eine Eigenschaft der Matrix genutzt wird, nämlich dass sie symmetrisch ist. Dadurch muss quasi nur die halbe Matrix umgewandelt werden, weil Cholesky so funktioniert, dass das irgendwie genau die Symmetrie erhält oder so ähnlich.

Jedenfalls habe ich mir das immer so vorgestellt, aber eine mathematisch korrekte Formulierung ist das wohl noch nicht. Habe mich aber auch länger nicht mehr damit beschäftigt, aber vielleicht hilft dir das ja als Anhaltspunkt. :-)

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Staatsexamen Numerik: zu 1.
Status: (Antwort) fertig Status 
Datum: 10:24 Fr 09.02.2007
Autor: mathemaduenn

Hallo Musele,
> [mm]n(n+1)+\bruch{1}{3}(n^3+\bruch{3}{2}n^2+\bruch{n}{2})[/mm] =
> [mm]\bruch{n^3}{3}+O(n^\red{2})[/mm]

So müßte es aussehen. Dann klar?
Das macht man meist so würde ich mal sagen.
grüße
mathemaduenn
Ach so noch was vergessen. Das können aber nur die Multiplikationen/Divisionen  sein. mit Additionen zusammen sind's [mm] \bruch{2}{3}n^3 [/mm] .


Bezug
        
Bezug
Staatsexamen Numerik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:50 Sa 10.02.2007
Autor: Karl_Pech

Hallo Musele,


Wenn es dir um Cholesky geht, kannst du dazu auch auf die Materialien-Seite des Numerik-Forums schauen.



Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]