matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungSpurgerade
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Spurgerade
Spurgerade < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spurgerade: bestimmen
Status: (Frage) beantwortet Status 
Datum: 11:27 So 10.04.2005
Autor: Kirke85

ich habe eine Aufgabe, bei der ich nicht weiterkomme... Sie lautet:
Bestimmen Sie die Gleichungen der Spurgeraden gx1x2, gx2x3, gx1x3 der Ebene [mm] E:\vec{x}=\vektor{-2\\-6\\21}+\lambda \vektor{6 \\0\\-18}+\mu\vektor{-1\\14\\-18} [/mm]
Wie muss ich bei dieser Aufgabe vorgehen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Spurgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 So 10.04.2005
Autor: Christian


> ich habe eine Aufgabe, bei der ich nicht weiterkomme... Sie
> lautet:
>  Bestimmen Sie die Gleichungen der Spurgeraden gx1x2,
> gx2x3, gx1x3 der Ebene
> [mm]E:\vec{x}=\vektor{-2\\-6\\21}+\lambda \vektor{6 \\0\\-18}+\mu\vektor{-1\\14\\-18}[/mm]
>  
> Wie muss ich bei dieser Aufgabe vorgehen?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Hallo.

Spurgeraden einer Ebene sind ja die Schnittgeraden mit den Koordinatenebenen, diese wiederum sind eben genau die Punkte, wo eine Koordinate immer 0 ist.
[mm]E:\vec{x}=\vektor{-2\\-6\\21}+\lambda \vektor{6 \\0\\-18}+\mu\vektor{-1\\14\\-18}[/mm]
Nehmen wir beispielsweise x=0.
Dann muß also [mm] $-2+6\lambda-1*\mu=0$, [/mm] also zum Beispiel [mm] $\mu=6\lambda-2$ [/mm] sein.
Wenn wir das nun aber in die Ebenengleichung einsetzen, haben wir auch gleich schon, was wir suchen, nämlich eine Gleichung für die erste Spurgerade:
[mm]g_1:\vec{x}=\vektor{-2\\-6\\21}+\lambda \vektor{6 \\0\\-18}+(6\lambda-2)\vektor{-1\\14\\-18}=\vektor{0 \\-34\\57}+\lambda\vektor{0\\ 84 \\ -126}[/mm]
Hoffentlich hab ich mich nicht verrechnet...
[EDIT:] Rechenfehler korrigiert... aber der Ansatz ist ja richtig
Kommst Du jetzt alleine weiter?

Gruß,
Christian


Bezug
                
Bezug
Spurgerade: Mitteilung
Status: (Antwort) fertig Status 
Datum: 12:17 So 10.04.2005
Autor: Zwerglein

Hi, Christian,

Kleine Verbesserung:

>  
> Nehmen wir beispielsweise x=0.

(Muss dann aber auch im Endergebnis rauskommen!)

>  Dann muß also [mm]-2+6\lambda+14\mu=0[/mm], also zum Beispiel
> [mm]\lambda=\frac{1}{3}-\frac{7}{3}\mu[/mm] sein.
>  Wenn wir das nun aber in die Ebenengleichung einsetzen,
> haben wir auch gleich schon, was wir suchen, nämlich eine
> Gleichung für die erste Spurgerade:
>  
> [mm]g_1:\vec{x}=\vektor{-2\\-6\\21}+(\frac{1}{3}-\frac{7}{3}\mu) \vektor{6 \\0\\-18}+\mu\vektor{-1\\14\\-18}=\vektor{0 \\-6\\15}+\mu\vektor{-15\\14 \\ 24}[/mm]
>  
> Hoffentlich hab ich mich nicht verrechnet...

Doch! Denn auch beim Richtungsvektor müsste 0 als erste Koordinate rauskommen! Ich glaube, die obige Gleichung muss
-2 + [mm] 6*\lambda [/mm] - [mm] \mu [/mm] = 0 heißen!

Bezug
                        
Bezug
Spurgerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:41 So 10.04.2005
Autor: Christian


> Hi, Christian,
>  
> Kleine Verbesserung:
>  >  
> > Nehmen wir beispielsweise x=0.
>  
> (Muss dann aber auch im Endergebnis rauskommen!)
>  
> >  Dann muß also [mm]-2+6\lambda+14\mu=0[/mm], also zum Beispiel

> > [mm]\lambda=\frac{1}{3}-\frac{7}{3}\mu[/mm] sein.
>  >  Wenn wir das nun aber in die Ebenengleichung einsetzen,
> > haben wir auch gleich schon, was wir suchen, nämlich eine
> > Gleichung für die erste Spurgerade:
>  >  
> >
> [mm]g_1:\vec{x}=\vektor{-2\\-6\\21}+(\frac{1}{3}-\frac{7}{3}\mu) \vektor{6 \\0\\-18}+\mu\vektor{-1\\14\\-18}=\vektor{0 \\-6\\15}+\mu\vektor{-15\\14 \\ 24}[/mm]
>  
> >  

> > Hoffentlich hab ich mich nicht verrechnet...
>  
> Doch! Denn auch beim Richtungsvektor müsste 0 als erste
> Koordinate rauskommen! Ich glaube, die obige Gleichung muss
> -2 + [mm]6*\lambda[/mm] - [mm]\mu[/mm] = 0 heißen!

Entschuldigung... die Gleichung ist natürlich falsch... hab beim Richtungsvektor aus Versehen die 2. Koordinate statt der ersten genommen.
Habs mittlerweile verbessert,

Gruß,
Christian

Bezug
                                
Bezug
Spurgerade: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:06 Mi 13.04.2005
Autor: Kirke85

ich danke euch! hat alles gut geklappt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]